Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy: \(x^2+2x+2>0;x^2-2x+3>0\)
\(\Rightarrow bpt\Leftrightarrow\left(\sqrt{x^2+2x+2}\right)^2>\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow x^2+2x+2>x^2-2x+3\)
\(\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\)
Vậy nghiệm của bpt là \(T=\left(\frac{1}{4};+\infty\right)\)
Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{2x^2}=b\end{cases}}\)
\(\Rightarrow a+\sqrt[3]{x^3+1}< b+\sqrt[3]{b^3+1}\)
Dễ thấy hàm số dạng \(f\left(t\right)=t+\sqrt[3]{t^3+1}\)đồng biến trên R nên
\(\Rightarrow a< b\)
\(\Leftrightarrow\sqrt[3]{x+1}< \sqrt[3]{2x^2}\)
\(\Leftrightarrow2x^2-x-1>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -\frac{1}{2}\end{cases}}\)
Cách khác: Dùng liên hợp.
bpt <=> \(\left(\sqrt[3]{2x^2}-\sqrt[3]{x+1}\right)+\left(\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}\right)>0\)
<=> \(\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2}\right)^2+\sqrt[3]{2x^2}.\sqrt[3]{x+1}+\left(\sqrt[3]{x+1}\right)^2}\)
\(+\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2+1}\right)^2+\sqrt[3]{2x^2+1}.\sqrt[3]{x+2}+\left(\sqrt[3]{x+2}\right)^2}>0\)
<=> \(2x^2-x-1>0\)
\(\sqrt{1-2x}+\sqrt{1+2x}\ge2-x^2\)
Điều kiện: \(-\frac{1}{2}\le x\le\frac{1}{2}\)
Với điều kiện này thì cả 2 vế đều dương. Bình phương 2 vế ta được.
\(\left(\sqrt{1-2x}+\sqrt{1+2x}\right)^2\ge\left(2-x^2\right)^2\)
\(\Leftrightarrow2\sqrt{\left(1-2x\right)\left(1+2x\right)}\ge x^4-4x^2+2\)
\(\Leftrightarrow\left(2\sqrt{\left(1-2x\right)\left(1+2x\right)}\right)^2\ge\left(x^4-4x+2\right)^2\)
\(\Leftrightarrow x^8-8x^6+20x^4\le0\)
\(\Leftrightarrow x^4\left(x^4-8x^2+20\right)\le0\)
Dễ thấy x4 - 8x2 + 20 > 0
\(\Rightarrow x^4\le0\)
\(\Rightarrow x=0\)
Vậy nghiệm của bất phương trình là: \(x=0\)
Ta có \(\left(2-x^2\right)^2< =\left(\sqrt{1-2x}+\sqrt{1+2x}\right)^2< =2\left(\sqrt{1-2x}^2+\sqrt{1+2x}^2\right)=4\)
=> \(2-x^2< =2\)
Luôn đúng với mọi x
a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\) (đk: \(x\ge0\))
\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)
\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)
\(\Leftrightarrow2\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)
\(\Leftrightarrow x=9\)(tmđk)
vậy nghiệm của phtrinh là x = 9
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
x=1 là nghiệm, nhân liên hợp dc bn mình làm nãy giờ mà ấn gửi nó báo Please_Sign_In nản luôn =="
j kìa
x\(\in\left\{-\infty;2\frac{1}{2}-\frac{\sqrt{53}}{2}\right\}U\left\{\frac{\sqrt{53}}{2}+2\frac{1}{2};\infty\right\}\)
có bạn nào biết thì giải giúp nha , hic hic còn khảng 6 bài nữa ..........giúp nha mọi người
x>-5/4 . phai ko nhi?