\(3^{\sqrt{x^2-2x}}\ge\left(\frac{1}{3}\right)^{x-\sqrt{x^2-2x+1}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :

Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)

- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)

- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)

                                                                 \(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm

Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )

 

5 tháng 4 2016

Điều kiện xác định : \(x\ge1+\sqrt{3}\)

Với điều kiện đó, bất phương trình trở thành : \(x^2+2x-2+2\sqrt{x\left(x+1\right)\left(x-2\right)}\ge3\left(x^2-2x-2\right)\left(2\right)\)

\(\Leftrightarrow\sqrt{x\left(x-2\right)\left(x+1\right)}\ge x\left(x-2\right)-2\left(x+1\right)\)

\(\Leftrightarrow\left(\sqrt{x\left(x-2\right)}-2\sqrt{x+1}\right)\left(\sqrt{x\left(x-2\right)}+\sqrt{x+1}\right)\le0\) (3)

Do với mọi x thỏa mãn (1) , ta có \(\sqrt{x\left(x-2\right)}+\sqrt{x+1}>0\) nên

(3) \(\Leftrightarrow\sqrt{x\left(x-2\right)}\le2\sqrt{x+1}\)

     \(\Leftrightarrow x^2-6x-4\le0\)

     \(\Leftrightarrow3-\sqrt{13}\le x\le3+\sqrt{13}\) (4)

Kết hợp (1) và (4) ta được tập nghiệm của bất phương trình đã cho là :

\(\left[1+\sqrt{3};3+\sqrt{13}\right]\)

15 tháng 2 2017

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2

6 tháng 5 2016

Điều kiện xác định :\(x\ne-1\)

Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)

\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)

                               \(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)

                               \(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)

                               \(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)

Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))

 

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0
x+x>(2x+3)(x1)
x+x>2x+x3
x3>0
x>3. (tmđk).
 

7 tháng 5 2020

\\(\\sqrt{2}x-y=0\\)

\n
3 tháng 5 2020

Câu 1:

Xét \(m=0\Rightarrow f\left(x\right)=0-0-1\le0\left(lđ\right)\)

Xét \(m>0\Rightarrow f\left(x\right)\le0\Leftrightarrow x_1\le0< 3\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le0\left(lđ\right)\\9m-6m-1\le0\end{matrix}\right.\Leftrightarrow m\le\frac{1}{3}\Rightarrow0< m\le\frac{1}{3}\)

Xét \(m< 0\Rightarrow f\left(x\right)\le0\)

Chia làm 3 TH:

TH1: \(\Delta< 0\Leftrightarrow m\left(m+1\right)< 0\Leftrightarrow-1< m< 0\)

TH2: \(\Delta=0\Rightarrow m\left(m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-1\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le3\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Leftrightarrow m< -1\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le0\left(lđ\right)\\\frac{2m}{m}>0\left(lđ\right)\end{matrix}\right.\)

\(x_1< x_2\le3\Leftrightarrow\left\{{}\begin{matrix}f\left(3\right)\le0\\\frac{x_1+x_2}{2}< 3\left(lđ\right)\end{matrix}\right.\)

Vậy \(m\in\left[-1;\frac{1}{3}\right]\)

Có gì sai sót bảo mình ạ :<

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)