Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định : \(x\ge1+\sqrt{3}\)
Với điều kiện đó, bất phương trình trở thành : \(x^2+2x-2+2\sqrt{x\left(x+1\right)\left(x-2\right)}\ge3\left(x^2-2x-2\right)\left(2\right)\)
\(\Leftrightarrow\sqrt{x\left(x-2\right)\left(x+1\right)}\ge x\left(x-2\right)-2\left(x+1\right)\)
\(\Leftrightarrow\left(\sqrt{x\left(x-2\right)}-2\sqrt{x+1}\right)\left(\sqrt{x\left(x-2\right)}+\sqrt{x+1}\right)\le0\) (3)
Do với mọi x thỏa mãn (1) , ta có \(\sqrt{x\left(x-2\right)}+\sqrt{x+1}>0\) nên
(3) \(\Leftrightarrow\sqrt{x\left(x-2\right)}\le2\sqrt{x+1}\)
\(\Leftrightarrow x^2-6x-4\le0\)
\(\Leftrightarrow3-\sqrt{13}\le x\le3+\sqrt{13}\) (4)
Kết hợp (1) và (4) ta được tập nghiệm của bất phương trình đã cho là :
\(\left[1+\sqrt{3};3+\sqrt{13}\right]\)
\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)
do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương
\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)
TH(1) x<3 <=>3-x>5-2x=> x>2
Kết luận(1) \(2< x< 3\)
TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)
Kết luận(2) \(x\ge3\)
(1)và(2) nghiệm của Bpt là: x>2
Điều kiện xác định :\(x\ne-1\)
Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)
\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)
\(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)
Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))
lời giải
a)
\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)
\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)
\(\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)
\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)
c)Đkxđ: x≥0
x+√x>(2√x+3)(√x−1)
⇔x+√x>2x+√x−3
⇔x−3>0
⇔x>3. (tmđk).
Câu 1:
Xét \(m=0\Rightarrow f\left(x\right)=0-0-1\le0\left(lđ\right)\)
Xét \(m>0\Rightarrow f\left(x\right)\le0\Leftrightarrow x_1\le0< 3\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le0\left(lđ\right)\\9m-6m-1\le0\end{matrix}\right.\Leftrightarrow m\le\frac{1}{3}\Rightarrow0< m\le\frac{1}{3}\)
Xét \(m< 0\Rightarrow f\left(x\right)\le0\)
Chia làm 3 TH:
TH1: \(\Delta< 0\Leftrightarrow m\left(m+1\right)< 0\Leftrightarrow-1< m< 0\)
TH2: \(\Delta=0\Rightarrow m\left(m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-1\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le3\end{matrix}\right.\end{matrix}\right.\)
\(\Delta>0\Leftrightarrow m< -1\)
\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le0\left(lđ\right)\\\frac{2m}{m}>0\left(lđ\right)\end{matrix}\right.\)
\(x_1< x_2\le3\Leftrightarrow\left\{{}\begin{matrix}f\left(3\right)\le0\\\frac{x_1+x_2}{2}< 3\left(lđ\right)\end{matrix}\right.\)
Vậy \(m\in\left[-1;\frac{1}{3}\right]\)
Có gì sai sót bảo mình ạ :<
Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :
Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)
- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)
- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)
\(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm
Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )