K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

9x2 + 4x – 3 – (3x + 2)2 > 0

⇔9x2 + 4x – 3 – (9x2 + 12x + 4) > 0

⇔ 9x2 + 4x – 3 – 9x2 – 12x – 4 > 0

⇔ – 8x > 7 ⇔ x < 7/-8 ⇔ x < -7/8

Tập nghiệm: S = {x|x < -7/8}

8 tháng 5 2019

a) \(3-2x>4\)

\(\Leftrightarrow-2x>1\)

\(\Leftrightarrow x< \frac{-1}{2}\)

b) \(\frac{2}{3-x}-\frac{9}{3+x}=\frac{1}{2}\)ĐKXĐ : \(x\pm3\)

\(\Leftrightarrow\frac{-4\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}-\frac{18\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow-4x-13-18x+54=x^2-9\)

\(\Leftrightarrow x^2+22x-50=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot11+11^2-171=0\)

\(\Leftrightarrow\left(x+11\right)^2=\left(\pm\sqrt{171}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{171}-11\\x=-\sqrt{171}-11\end{cases}}\)( thỏa )

Vậy....

8 tháng 5 2019

\(a,\)\(3-2x>4\)

\(\Rightarrow-2x>1\)

\(\Rightarrow x< \frac{-1}{2}\)

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

1 tháng 5 2016

(x-1)/(x-3)>(x-3)/(x-3)  

x-1>x-3 

x-x> -3 +1 

0X >-2      (phuong trinh vo nghiem )

12 tháng 3 2020

x⁴ - 4x² + 12x - 9 = 0

<=> x⁴ - x³ + x³ - x² - 3x² + 3x + 9x - 9 = 0

<=> x³(x - 1) + x²(x - 1) - 3x(x - 1) + 9(x - 1) = 0

<=> (x - 1)(x³ + x² - 3x + 9) = 0

<=> (x - 1)(x³ + 3x² - 2x² - 6x + 3x + 9) = 0

<=> (x - 1)[ x²(x + 3) - 2x(x + 3) + 3(x + 3) ] = 0

<=> (x - 1)(x + 3)(x² - 2x + 3) = 0

<=> (x - 1)(x + 3)(x² - 2x + 1 + 2) = 0

<=> (x - 1)(x + 3)[ (x - 1)² + 2 ] = 0

<=> (x - 1)(x + 3) = 0 --> do (x - 1)² + 2 > 0 với mọi x

<=>

[ x - 1 = 0 =>[ x = 1

[ x + 3 = 0 =>[ x = -3

Bạn nên sửa >= là = vì giải bất phương trình mà

27 tháng 12 2015

Em học lớp 6 vào chtt nha tick cho em với

11 tháng 8 2017

câu 1 theo cách nhẩm nghiệm thì mình thấy hình như bn chép sai đề r

x2-1/x-1>0=>(x-1)(x+1)/x-1>0 rút gọn vế trái còn x+1>0=.x>-1

x2-6x+9>0=>x-3(x-3)>0=>xảy ra khi 2 thừa số này cùng dấu =>x>3 hoặc x<3

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)