Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm có dạng là ab(Điều kiện: \(a,b\in Z^+\); \(0< a< 10\); \(0< b< 10\))
Vì tổng các chữ số của nó bằng 10 nên ta có phương trình: a+b=10(1)
Vì khi số ấy viết theo thứ tự ngược lại thì số ấy giảm 36 đơn vị nên ta có phương trình:
\(10b+a=10a+b-36\)
\(\Leftrightarrow10b+a-10a-b=-36\)
\(\Leftrightarrow-9a+9b=-36\)
\(\Leftrightarrow a-b=4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=10\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=6\\a-b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4+b\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4+3=7\\b=3\end{matrix}\right.\)
Vậy: Số cần tìm là 73
Gọi \(\overline{ab}=10a+b\) là số tự nhiên cần tìm (a>b)
Theo đề ta có
\(\left\{{}\begin{matrix}a+b=8\\10a+b-\left(10b+a\right)=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\10a+b-10b-a=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\9a-9b=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\a-b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=12\\a-b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)
Vậy số tự nhiên đó là 62
Gọi số đó là ab
Ta có : a + b = 8 (1)
Và ab - 36 = ba (2)
Từ (2) ta có : ab - ba = 36
<=> 10a + b - 10b - a = 36
<=> 9a - 9b = 36
<=> 9( a - b) = 36
<=> a - b = 4 (3)
Kết hợp (1) và (3) ta trở về bài toán tổng - hiệu
Số a là : (8 + 4):2 = 6
Số b là :8 - 6 = 2
Vậy số bạn đầu là 62
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có:
a+b=10 và 10b+a-10a-b=36
=>a+b=10 và -9a+9b=36
=>a+b=10 và a-b=-4
=>a=3 và b=7
Gọi \(x\) là chữ số hàng chục \(\left(x\le9,x\in Z^+\right)\)
y là chữ số hàng đơn vị \(\left(y\le9,y\in N\right)\)
Do tổng hai chữ số là 10 nên: \(x+y=10\) (1)
Do khi đổi chỗ hai chữ số cho nhau được số mới lớn hơn số ban đầu 36 đơn vị nên: \(10y+x-10x-y=36\Leftrightarrow-9x+9y=36\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=10\\-9x+9y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=10\\x-y=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x+y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\) (nhận)
Vậy số cần tìm là 37
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có hệ:
a+b=10 và 10b+a-10a-b=36
=>a+b=10 và -9a+9b=36
=>a+b=10 và a-b=-4
=>a=3 và b=7
gọi chữ số hàng chục là a ( a thuộc tập hợp N*)
thì chữ số hàng đơn vị là 3a
ta được số ban đầu là 10a + 3a = 13a
số sau khi đổi chỗ là 10.3a + a = 31a
vì sau khi đỗi chỗ các chữ số thì số mới hơn số ban đầu 18 đơn vị nên ta có phương trình
13a + 18 = 31a
<=> 13a - 31a = -18
<=> -18a = -18
<=> a = 1 (thỏa mãn điều kiện )
=> 3a = 3
vạy ta được số 13
Gọi chữ số hàng chục của số đã cho là x
Gọi chữ số hàng đơn vị của số đã cho là y
ĐK: x ≤ 9 ; x ∈ \(N^*\)
y ≤ 9 ; y ∈ \(N\)
Vì tổng các chữ số của nó bằng 13 nên ta có pt: x + y = 13 (1)
Số đã cho là: \(\overline{xy}=10x+y\)
Số mới là: \(\overline{yx}=10y+x\)
Vì số mới lớn hơn số đã cho 27 đơn vị nên ta có pt:
\(\left(10y+x\right)-\left(10x+y\right)=27\)
\(\Leftrightarrow10y+x-10x-y=27\)
\(\Leftrightarrow9y-9x=27\)
\(\Leftrightarrow3y-3x=9\)
\(\Leftrightarrow y-x=3\)
\(\Leftrightarrow-x+y=3\) (2)
Từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=13\\-x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=8\end{matrix}\right.\left(TM\right)\)
Vậy số đã cho là 58.
- Gọi chữ số hàng chục là x, chữ số hàng đơn vị là y (10 > x,y > 0)
- Ta có: \(x+y=8\left(a\right)\)
và \(\overline{yx}-\overline{xy}=18\)
\(\Leftrightarrow10y+x-10x-y=18\)
\(\Leftrightarrow9y-9x=18\)
\(\Leftrightarrow9\left(y-x\right)=18\)
\(\Leftrightarrow y-x=2\left(b\right)\)
Từ (a) và (b), ta có hệ phương trình sau: \(\left\{{}\begin{matrix}x+y=8\\y-x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8-y\\y-8+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8-y\\2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)
Vậy: Số cần tìm là 35
gọi số tự nhiên có hai chữ số là ab
nếu đổi vị trí hai chữ số đó thì số mới là ba
vì tổng của hai chữ số bằng 8 nên ta có: a+b=8 (1)
khi đổi vị trí của hai chữ số thì số tự nhiên đó giảm 36 đơn vị nên ta có:
ab -ba =36
10a+b-10b-a=36
9a-9b=36
a-b=4(2)
từ (1) và (2 ) ta có hệ
a+b=8
a-b=4
a=6 và b=2