Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi quãng đường AB là x (x>0)km
thời gian đi hết quãng đường AB là \(\dfrac{x}{30} h\)
quãng đường người đó đi lúc về dài 15+x km
thời gian về trên quãng đường đó \(\dfrac{15+x}{40}h\)
vì thời gian về ít hơn tg đi là 20p=\(\dfrac{1}{3}\)h nên ta có
\(\dfrac{x}{30}-\dfrac{15+x}{40}=\dfrac{1}{3}\)
giải pt x=85
vậy quãng đường AB dài 85 km
Gọi x (km) là quãng đường người đó đi về ( x>0)
Thời gian người đó đi từ A đến B : x : 30 = \(\dfrac{x}{30}\) (km/h)
Thời gian người đó đi về bằng con đường khác: x : 40 = \(\dfrac{x}{40}\) (km/h)
Vì lúc về người đó đi con đường khác về nên ít hơn thời gian đi là
20 phút (= \(\dfrac{1}{3}giờ\)) nên ta có phương trình
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{1}{3}\)
\(\dfrac{4x}{120}-\dfrac{3x}{120}=\dfrac{40}{120}\)
⇒ 4x -3x = 40
x= 40 ( km )
Quãng đường AB dài: 40 + 15 = 55 ( km )
Vậy quãng đường AB dài 55 km
Gọi độ dài quãng đường lúc đi là x (km) với x>0
Độ dài quãng đường lúc về là: \(x+6\) (km)
Thời gian đi của người đó: \(\dfrac{x}{25}\) giờ
Thời gian về của người đó: \(\dfrac{x+6}{30}\) giờ
Do thời gian về ít hơn thời gian đi là \(10\) phút \(=\dfrac{1}{6}\) giờ nên ta có pt:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x}{150}=\dfrac{11}{30}\)
\(\Leftrightarrow x=55\left(km\right)\)
S (km) | v (km/giờ) | t (giờ) | |
A→B | x | 25km/giờ | \(\dfrac{x}{25}\) |
Quãng đường khác | x+6 | 30km/giờ | \(\dfrac{x+6}{30}\) |
Theo đầu bài ta có phương trình:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow x=55\left(km\right)\)
Vậy quãng đường lúc đi là 55km
Gọi độ dài quãng đường AB là x ( đk x>7)
Theo đề toán ta có: \(\dfrac{x}{24}+\dfrac{x+7}{30}=\dfrac{1}{3}\)
giải nốt :D
Đổi \(20'=\dfrac{1}{3}h\)
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là:
\(\dfrac{x}{24}\)(h)
Thời gian người đó đi từ B về A là:
\(\dfrac{x+7}{30}\)(h)
Vì thời gian về ít hơn thời gian đi là 20 phút nên ta có phương trình:
\(\dfrac{x}{24}-\dfrac{x+7}{30}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{10x}{240}-\dfrac{8\left(x+7\right)}{240}=\dfrac{80}{240}\)
\(\Leftrightarrow10x-8x-56=80\)
\(\Leftrightarrow2x=136\)
hay x=68(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 68km
gọi độ dài quãng đường AB là x(km)(x>0)
độ dài quãng đường khác là x+15(km)
thời gian đi là: \(\frac{x}{30}\left(h\right)\)
thời gian về là:\(\frac{x+15}{40}\left(h\right)\)
theo đề bài: thời gian về ít hơn thời gian đi là 20 phút\(=\frac{1}{3}h\) nên ta có PT
\(\frac{x}{30}-\frac{x+15}{40}=\frac{1}{3}\)
\(\Leftrightarrow\frac{4x}{120}-\frac{3\left(x+15\right)}{120}=\frac{40}{120}\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=95\left(tmđk\right)\)
vậy đọ dài quãng đường AB là 95 km
Đổi: 20 phút = 1/3 h Gọi quãng đường AB là x (km) (x>0) Thời gian lúc đi là: x/30 (h) QĐ lúc về là: x + 15 (km) Thời gian lúc về là: (x + 15)/40 (h) Vì thời gian về ít hơn thời gian đi 20 phút nên ta có PT: x/30 - (x+15)/40 = 1/3 => ( x - 45)/120 = 1/3 => x - 45 = 40 => x = 85 (km) Vậy quãng đường AB dài 85 km
Gọi quãng đường AB là x
=> Thời gian lúc đi là x/25
Thời gian lúc về là x/ 30
Vì thời gian về ít hơn thời gian đi là 20 phút = 1/3 h, nên ta có pt sau
x/25 - x/30 = 1/3
<=>6x/150 - 5x/ 150 = 50/ 150
<=> 6x - 5x = 50
<=> x= 50
Vậy quãng đường AB dài 50 km
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{30}{x}-\dfrac{36}{x+21}=\dfrac{15}{60}=\dfrac{1}{4}\Rightarrow x\approx32,5km\)
Gọi x (km) là quãng đường AB :
ĐK : x > 0
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x+15}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 20 phút nên ta có pt :
\(\dfrac{x}{30}-\dfrac{x+15}{40}=\dfrac{1}{3}\)
\(\Leftrightarrow4x-3\left(x+15\right)=40\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=85\left(N\right)\)
Vậy : ...