Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
\(A=\left|2x-2\right|+\left|2x-2013\right|\)
\(A=\left|2x-2\right|+\left|2013-2x\right|\)
\(A\ge\left|2x-2+2013-2x\right|\)
\(A\ge2011\)Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)
A=|2x-2|+|2x-2013|
ta có |2x-2|=|2-2x|>hoặc=2-2x
. |2x-2013|>hoặc=2x-2013
=) A> hoặc = 2-2x+2x-2013
A> hoặc = -2011
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
A = |x - 5| + |x - 7|
A = |x - 5| + |7 - x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\begin{cases}x-5\ge0\\7-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge5\\x\le7\end{cases}\)\(\Rightarrow5\le x\le7\)
Vậy GTNN của A là 2 khi \(5\le x\le7\)
Có: \(|x-1|\ge0\)
\(|x-2|\ge0\)
.................
\(|x-2019|\ge0\)
=> \(A\ge0\)
Vậy giá trị nhỏ nhất của A là 0
\(A=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
Vậy GTNN của A là 3 khi \(\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le5\)
Áp dụng tính chất: |a|+|b| >=|a+b| ta có:
|x-2|+|5-x|>=|x-2+5-x|=|3|=3
=>A>=3
Dấu bằng xảy ra khi: -5<=x<=2
Vậy giá trị nhỏ nhất của A là:3
>= là lớn hơn hoặc bằng: <= là bé hơn hoặc bằng
Chúc bạn học tốt
\(A=\left|x-2013\right|+\left|x-2000\right|\)
\(=\left|x-2013-x+2000\right|\)
\(=\left|-13\right|=13\)
\(A_{min}=13\)