K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

\(-1\le\sin\left(x+\frac{\pi}{12}\right)\le1\)

\(\Rightarrow\sin^2\left(x+\frac{\pi}{12}\right)\le1\)

\(\Leftrightarrow3\sin^2\left(x+\frac{\pi}{12}\right)\le3\)

\(\Leftrightarrow3\sin^2\left(x+\frac{\pi}{12}\right)+4\le7\)

A

1 tháng 8 2019

đọc lại lý thuyết rồi làm 

NV
14 tháng 9 2020

a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)

\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)

Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)

b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)

\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)

\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)

c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)

\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)

\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)

NV
20 tháng 10 2019

\(cos\left(\frac{x}{2}+15^0\right)=sinx=cos\left(90^0-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}+15^0=90^0-x+k360^0\\\frac{x}{2}+15^0=x-90^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=50^0+k240^0\\x=210^0+k720^0\end{matrix}\right.\)

Với \(k=1\Rightarrow x=290^0\)

Bài 2:

\(\Leftrightarrow2sinx+2sinx.cosx-cosx-cos^2x-sin^2x=0\)

\(\Leftrightarrow2sinx+2sinx.cosx-cosx-1=0\)

\(\Leftrightarrow2sinx\left(cosx+1\right)-\left(cosx+1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(cosx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\) đáp án B

3/ \(y=\frac{sinx+cosx-1}{sinx-cosx+3}\)

\(\Leftrightarrow y.sinx-y.cosx+3y=sinx+cosx-1\)

\(\Leftrightarrow\left(y-1\right)sinx-\left(y+1\right)cosx=-3y-1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y-1\right)^2+\left(y+1\right)^2\ge\left(-3y-1\right)^2\)

\(\Leftrightarrow7y^2+6y-1\le0\)

\(\Rightarrow-1\le y\le\frac{1}{7}\Rightarrow y_{max}=\frac{1}{7}\)

14 tháng 10 2021

ĐỢI MK TÍNH