K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)

\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)

\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)

\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)

\(\Rightarrow P\ge45\)

Dấu "=" xảy ra khi xy=2

Lại có \(x+y=\sqrt{10}\)

\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)

\(\Rightarrow y^2-\sqrt{10y}+2=0\)

Ta có \(\Delta=10-8=2\)

\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)

17 tháng 11 2016

Bài này làm phức tạp nên để khi khác làm

8 tháng 11 2021

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc

1 tháng 10 2015

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

30 tháng 9 2015

hok giỏi nhưng cx có bài bế tắc chứ bộ đâu fai hok giỏi nhất thiết là cái gì cx biết đâu

1 tháng 10 2015

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

 

10 tháng 2 2017

Bị nhầm

Làm lại: Mọi lập luận theo trước

\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{\left(\sqrt{10}\right)^2}{2}=\frac{10}{2}=5\) Nhầm chỗ này!!

Kết luận

Pmin=5^2=25 đẳng thức khi \(x=y=\frac{\sqrt{10}}{2}\)

10 tháng 2 2017

Bunyacokovski ta có

\(P=\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)

đẳng thức khi \(\frac{x^2}{y^2}=\frac{1^2}{1^2}=1\Rightarrow x^2=y^2\) (1)

Ta cũng có

\(2.\left(x^2+y^2\right)=\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow\left(x^2+y^2\right)\ge2.\left(x+y\right)^2=2.\left(\sqrt{10}\right)^2=20\)

đẳng thức khi : \(\frac{1}{x}=\frac{1}{y}\) (2)

Từ (1) (2)

Kết luận: Pmin=20 đạt tại x=y=\(\frac{\sqrt{10}}{2}\)

13 tháng 6 2017

\(A=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=\left[10-2xy\right]^2-2x^2y^2+x^4y^4+1\)

\(=2x^2y^2+x^4y^4-40xy+101\)

\(=\left(x^4y^4-8x^2y^2+16\right)+10\left(x^2y^2-4xy+4\right)+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\ge45\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y=\sqrt{10}\\xy=2\end{cases}}\)

13 tháng 6 2017

\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)

mà \(^{x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=5}\)

=>\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\ge25\)

14 tháng 2 2020

Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT Cô-si, ta có :

\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)

\(\Rightarrow x+y\ge2\)

Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\)\(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)

\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)

Vậy GTNN của P là 2 khi x = y = 1