Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(\frac{x-1+\sqrt{xy}+\sqrt{y}}{\sqrt{x}+1}+1\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{y}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+1\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+\sqrt{y}-1\right)}{\sqrt{x}+1}+1\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}-1+1\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)
Câu 2:
a/ Bạn tự giải
b/ \(\Delta'=\left(m-1\right)^2-m+5=m^2-3m+6=\left(m-\frac{3}{2}\right)^2+\frac{15}{4}>0\)
Pt luôn có 2 nghiệm phân biệt với mọi m
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(P=x_1^2+x_2^2+2x_1x_2-2x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4\left(m-1\right)^2-2\left(m-5\right)\)
\(=4m^2-10m+14\)
\(=\left(2m-\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
\(\Rightarrow P_{min}=\frac{31}{4}\) khi \(2m-\frac{5}{2}=0\Leftrightarrow m=\frac{5}{4}\)
Link : https://123doc.org/document/3369350-ung-dung-cua-dinh-ly-viet.htm
Trang 2 nhé :33