Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiển nhiên quá nhỉ
\(x_1;x_2\)là hai nghiệm của phương trình suy ra \(\hept{\begin{cases}x_1^2-3x_1+1=0\\x_2^2-3x_2+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x_1^2=3x_1-1\\x_2^2=3x_2-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^{n+2}=3x_1^{n+1}-x_1^n\\x_2^{n+2}=3x_2^{n+1}-x_2^n\end{cases}}\)
Cộng theo từng vế của hai phương trình trên ta được: \(A_{n+2}=3A_{n+1}-A_n\)(Đpcm)
Link : https://123doc.org/document/3369350-ung-dung-cua-dinh-ly-viet.htm
Trang 2 nhé :33
\(ax^2+bx+c=0\)
Do phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)
\(\Rightarrow b,c\) trái đấu
Xét \(cx^2+bx+a=0\)
Giả sử phương trình có 2 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )
Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt
\(\Rightarrow\) đpcm
Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )
Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )
Từ ( 1 ) và ( 2 )
Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)
\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )
\(b^2-4ac\ge0\)
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}\\ax_1+bx_2=-c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ax_1+ax_2=-b\\ax_1+bx_2=-c\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)x_2=c-b\Rightarrow x_2=\frac{c-b}{a-b}\) (có thể dễ dàng biện luận ko thể xảy ra \(a=b=c\))
\(\Rightarrow x_1=-\frac{b}{a}-x_2=-\frac{b}{a}-\frac{c-b}{a-b}\)
\(\Rightarrow\left(\frac{c-b}{a-b}\right)\left(-\frac{b}{a}-\frac{c-b}{a-b}\right)=\frac{c}{a}\)
\(\Leftrightarrow a\left(c-b\right)^2+b\left(a-b\right)\left(c-b\right)+c\left(a-b\right)^2=0\)
\(\Leftrightarrow ac^2+b^3+a^2c-3abc=0\)
\(\Leftrightarrow ac\left(a+c-3b\right)+b^3=0\)
đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.
@nguyenthanhtuan cái này là chứng minh mà bạn.
bài này hay đó bạn
ta có: Sn+2= x1n+2+ x2n+2 = x1n+2+ x2n+2+ x1n+1x2+ x2n+1x1- x1n+1x2- x2n+1x1
= ( x1n+1+ x2n+1)( x1+x2) - x1x2 ( x1n+x2n)
= - b/aSn+1 - c/aSn ( Viet )
Suy ra aSn+2 +bSn+1+ cSn = -bSn+1 -cSn + bSn+1 +cSn = 0 (đpcm)