Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (\(a;b;c\ne0\) )
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1-2\left(\frac{ayz+bxz+cxy}{abc}\right)=1-2.0=1\)
=> đpcm
á em đổi biến lộn ạ. Em định viết H;U;Y cho đúng tên mình mà quen tay lộn vào Y;Z ạ
Đặt \(\left(\frac{x}{a};\frac{y}{b};\frac{z}{c}\right)\rightarrow\left(H;U;Y\right)\)
Khi đó ta có:
\(H+U+Y=1;\frac{1}{H}+\frac{1}{U}+\frac{1}{Y}=0\Rightarrow HU+UY+YH=0\)
Thay vào thì :
\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\left(H+U+Y\right)^2-2\left(HU+UY+YH\right)=1\)
Vậy ta có đpcm
2. Có : 1/x + 1/y + 1/z = 0
=> 1 + x/y + x/z = 0 => x/y + x/z = -1
Tương tự : y/x + y/z = -1 ; z/x + z/y = -1
=> x/y + x/z + y/x + y/z + z/x + z/y = -3
Lại có : 1/x+1/y+1/z = 0
<=> xy+yz+zx/xyz = 0
<=> xy+yz+zx = 0
Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)
= xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z
= xy/z^2+xz/y^2+xy/z^2-3
=> xy/z^2+xz/y^2+xy/z^2 = 3
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cô si ta có:
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow b+c\ge4a.4bc=16abc\)
1.
Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
tương tự, ta có:
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)
Cộng theo vế của 3 BĐT trên, ta được:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\) (ĐPCM)
ý b nghĩ đã ~.~
2.
P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)
Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!
Làm trước câu 3:
Ta có:
\(\frac{1x}{a}+\frac{y}{b}=\frac{x+y}{c}\)
\(\Leftrightarrow1bcx+acy=abx+aby\)
\(\Leftrightarrow1x\left(bc-ab\right)=y\left(ab-ac\right)\)
\(\Leftrightarrow\frac{1x}{y}=\frac{a\left(b-c\right)}{b\left(C-a\right)}\)
Ta cần chứng minh
\(1xa^2+yb^2=\left(x+y\right)c^2\)
\(\Leftrightarrow1x\left(a^2-c^2\right)=y\left(c^2-b^2\right)\)
\(\Leftrightarrow\frac{1x}{y}=\frac{\left(c-b\right)\left(c+b\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a\left(b-c\right)}{b\left(c-a\right)}\)
Vậy ta có ĐPCM
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\ge0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\)
\(\Rightarrow Q.E.D\)
Dấu "=" xảy ra khi a=b
\(gt\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=6\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)thì \(P=a^2+b^2+c^2\)và \(a+b+c+ab+bc+ca=6\)
Giải:
Ta có: \(x^2+1\ge2\sqrt{x^2\cdot1}=2x\)
Tương tự rồi cộng theo vế ta được: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)
Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)
Cộng (1), (2) theo vế ta được:
\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=2\cdot6=12\)
\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)
MinP = 3 khi a = b = c = 1 hay x = y = z = 1
\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)
\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)
\(\Rightarrow P\le\frac{3}{4}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)