K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

Câu 3

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_2}{a_1}=\frac{a_3}{a_2}=\frac{a_4}{a_3}=......=\frac{a_{2001}}{a_{2000}}=\frac{a_1}{a_{2001}}=\frac{a_2+a_3+a_4+.....+a_{2001}+a_1}{a_1+a_2+a_3+.....+a_{2000}+a_{2001}}=1\)

=> a2 = a1

     a3 = a2 

     a4 = a3 

    .............

     a2001 = a2000

     a1 = a2001

=> a1 = a2 = a3 = ...... = a2001 

5 tháng 3 2017
  1. x=1 y=2 Ta thấy rằng nếu x >2 thì 2x^3>7 => x=1. Cứ tính rồi sẽ ra y
23 tháng 4 2020

Với a\(\in\)Z thì a3-a=(a-1)a(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2,3

Mà (2,3)=1 => a3-a chia hết cho 6

=> S-P=(a13-a1)+(a23-a2)+....+(an3-an) chia hết cho 6

Vậy S chia hết cho 6 <=> P chia hết cho 6

21 tháng 9 2016

ai chuk?

4 tháng 1 2017

ta có 20132014= a1 + a2 +…+a2013

Đặt S = a13  + a2 + ….+ a20133

        S - 20132014= a13  + a2 + ….+ a20133 - (a+ a2 +…+a2013)

                                = (a1 - a1) +  (a1 - a1) +...+  (a1 - a1)

ta có bài toán phụ sau:

   x3 - x = x(x2 - 1) = x(x-1)(x+1) (vì x2 - 1 = (x+1)(x-1))

Ta thấy x(x-1)(x+1) là 3 số tự nhiên liên tiếp nên tích đó phải chia hết 

Vậy x3 - x chia hết cho 3

Từ kết luận của bài toán phụ trên mà ta suy ra được mỗi hiệu của tổng trên đều chia hết cho 3 nên tổng đó chia hết cho 3

Suy ra S và 20132014 khi chia cho 3 thì cùng có số dư như nhau

Mà 2013 chia hết cho 3 nên 20132014 chia hết cho 3

Vậy S chia hết cho 3 hay a13  + a2 + ….+ a2013chia hết cho 3( điều phải chứng minh)

3 tháng 11 2019

@Akai Haruma

6 tháng 7 2019

Câu a) 

Em tham khảo link: Câu hỏi của I have a crazy idea - Toán lớp 6 - Học toán với OnlineMath

Ta có bài toán

Pn-Pn-1=(n-1)Pn-1

Chứng minh

Ta có    Pn-Pn-1=n!-(n-1)!

                         =n(n-1)!-(n-1)!

                         =(n-1)(n-1)!=(n-1)Pn-1

=>Pn-Pn-1=(n-1)Pn-1

Từ kết quả trên ta có

P2-P1=(2-1)P1

P3-P2=(3-1)P2

...............

Pn=Pn-1=(n-1)Pn-1

-----------------------------

Pn-P1=P1+2P2+3P3+.........+(n-1)P1

=>1+1.P1+2P2+3P3+...+n.Pn=Pn+1