Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)< 1\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot4\cdot....\cdot2016\cdot2017}{2\cdot3\cdot4\cdot5\cdot....\cdot2017\cdot2018}\)
\(=\frac{1}{2018}< 1\)
\(\Rightarrow\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)< 1\left(đpcm\right)\)
\(A=\left(1-\frac{1}{2018}\right)\left(1-\frac{2}{2018}\right)\left(1-\frac{3}{2018}\right)...\left(1-\frac{2020}{2018}\right).\)
\(=\frac{2017}{2018}\cdot\frac{2016}{2018}\cdot\frac{2015}{2018}\cdot...\cdot\left(1-\frac{2018}{2018}\right)\cdot...\cdot\frac{-2}{2018}\)
\(=\frac{2017}{2018}\cdot\frac{2016}{2018}\cdot\frac{2015}{2018}\cdot...\cdot0\cdot...\cdot\frac{-2}{2018}\)
\(=0\)
P=3 /1.22 +1/22.32+...+4033/20162.20172
P=1/1 -1/22 +1/22 -1/52 +...+1/20162 - 1/20172
P=1-1/20172 <1
vậy p<1
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!