Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này không khó cách làm thế này:
x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4
= (x + y +1 )2 +4
Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4
Dấu "=" xảy ra khi và chỉ khi x=y=-0,5
Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.
Xong rồi đó. Có gì sai sót các bạn góp ý nhé.
10) Đặt biểu thức là A
\(A=x^2-x+1\)
\(\Leftrightarrow A=x^2-2.x.\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\frac{1}{2}^2+1\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Vậy điền dấu lớn hơn
9) Đặt biểu thức là B
\(B=-x^2+x-1\)
\(B=-\left(x^2-x+1\right)\)
\(B=-\left(x^2-2.x.\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\right)\)
\(B=-\left(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)Vậy điền dấu bé
\(a^3+b^3=637\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=637\Rightarrow a^2-ab+b^2=\frac{637}{13}=49\)\(\left(a+b\right)=13\Rightarrow\left(a+b\right)^2=13^2=169\Leftrightarrow a^2+2ab+b^2=169\)
Ta có: \(a^2-ab+b^2=49\left(1\right)\)
\(a^2+2ab+b^2=169\left(2\right)\)
Lấy (2) trừ 1 ta được 3ab=120=>ab=40
ab=40=>-ab=-40=>a2+b2=49+40=89
\(\left(a-b\right)^2=a^2-2ab+b^2=a^2+b^2-2ab=89-2.40=89-80=9\)Nhập kết quả: 9
\(-x^2+x-1=-\left(x^2-x+1\right)=-\left(x^2-2x+3x\right)=-\left(\left(x-1\right)^2+3x\right)=-\left(x-1\right)^2-3x\)Ta có: (x-1)2>=0=>x>=1
(x-1)2=0=>-(x-1)2<0
MÀ X>=1 => 3x>=1=> -3x<0
=> (-x2+x-1)<0
vậy 2+x=0=>x=-2
a, = x2 - 6x + 9 - 1 = (x - 3)2 - 12 = (x - 4)(x - 2)
b, = 4x2 - 4x - 3x + 3 = 4x(x - 1) - 3(x - 1) = (x - 1)(4x - 3)
c, = (x + 2)(5x - 4)
d, = 5x2 - 5x + 2x - 2 = 5x(x - 1) + 2(x - 1) = (x - 1)(5x + 2)
a) \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
b) \(4x^2-7x+3\)
\(=4x^2-4x-3x+3\)
\(=4x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(4x-3\right)\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2\)
\(=9x^2-6x+1-\left(4x^2-12x+9\right)\)
\(=9x^2-6x+1-4x^2+12x-9\)
\(=5x^2+6x-8\)
\(=5x^2+10x-4x-8\)
\(=5x\left(x+2\right)-4\left(x+2\right)\)
\(=\left(x+2\right)\left(5x-4\right)\)
d) \(5x^2-3x-2\)
\(=5x^2-5x+2x-2\)
\(=5x\left(x-1\right)+2\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+2\right)\)
\(2x+y=6\)
\(\Rightarrow y=6-2x\)
\(\text{Thế vào phương trình ta dc:}\)
\(4x^2+\left(6-2x\right)^2\)
\(=4x^2+36-24x+4x^2\)
\(=8x^2-24x+36\)
\(\Leftrightarrow4x\left(2x-6\right)+36\)
Rồi sao nữa quên ùi
ta có : \(2x+y=6\Leftrightarrow y=6-2y\)
thay vào A, ta có:
\(A=4x^2+\left(6-2x\right)^2\)
\(A=8\left(x^2-3x+2,25\right)+18\)
\(A=8\left(x-1,5\right)^2+18\)
\(\Rightarrow A\ge18\)
A=(x+y+1)(x+y+1)+4
A=(x+y+1)2+4
Vậy MinA=4 khi.......... của @Nguyễn Huy Thắng đó mà ghi tiếp
ngu Anh nhưng ko sao dịch dc chữ Find the minimum = tìm GTNN :)