K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

* Với p = 2 thì p4 + 2 = 24 + 2 = 18 là hợp số ( loại )

* Với p = 3 thì p4 + 2 = 34 + 2 = 83 là số nguyên tố ( thỏa mãn )

* Với p > 3: p là số nguyên tố

=> p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).

+) p = 3k + 1: Ta có: p4 + 2  = ( 3k + 1 )4 + 2 = 3k4 + 4 + 2 = 3k4 + 6 = 3( k4 + 2 ) ⋮ 3 là hợp số (Loại)

+) p = 3k + 2: Ta có: p4 + 2 = ( 3k + 2 )4 + 2 =  3k4 + 16 + 2 =  3k4 + 18 = 3( k4 + 6 )  ⋮ 3 là hợp số (Loại).

Với p > 3 không có giá trị nào thỏa mãn yêu cầu của bài toán.

KL: p = 3 là thỏa mãn yêu cầu bài toán.

5 tháng 7 2019

+) Với P = 2 \(\Rightarrow p^4+2=2^4+2=16+2=18\)( không là SNT )

    \(\Rightarrow p=2\)( loại ) 

+) Với P= 3 \(\Rightarrow p^4+2=3^4+2=81+2=83\)( là SNT )

     \(\Rightarrow p=3\)( chọn )

+) Với p >3 \(\Rightarrow p\) có dạng  3k+1  ( k \(\in\)N* ) 

                                               3k+2 

+) Với p= 3p+1 \(\Rightarrow p^4+2=\left(3k+1\right)^4+2\)

                                            \(=\left(9k^2+6k+1\right)^2+2\)

                                            \(=81k^4+36k^2+1+108k^3+18k^2+12k+2\)

                                             \(=3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)⋮3\)

                          Mà \(3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)>3\)

\(\Rightarrow3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)\)là hợp số 

 \(\Rightarrow p=3k+1\)( loại )

+) Với \(p=3k+2\Rightarrow p^4+2=\left(3k+2\right)^4+2\)

                                                      \(=\left(9k^2+12k+4\right)^2+2\)

                                                      \(=81k^4+144k^3+16+216k^3+72k^2+96k+2\)

                                                       \(=3.\left(27k^4+48k^3+6+72k^3+32k\right)⋮3\)

                 Mà \(3.\left(27k^4+48k^3+6+72k^3+32k\right)>3\)

\(\Rightarrow3.\left(27k^4+48k^3+6+72k^3+32k\right)\)là hợp số

      \(\Rightarrow p=3k+2\)(loại )

Vậy p=3

25 tháng 3 2015

Ta có 46y là số chẵn với mọi y.

Nếu x là SNT lớn hơn 2=> 59x lẻ=>59x+46y lẻ(ko thỏa mãn đề bài)

=>x chẵn. Mà chỉ có số 2 là SNT chẵn duy nhất =>x=2

=>y=(2004-59.2)/46=41 

25 tháng 3 2015

bài 1: x=2 ; y=41

bài 2: 3

21 tháng 11 2015

3 cần cách giải thì nói

13 tháng 11 2014

Ko có số nào

 

 

Số p có một trong ba dạng : 3k, 3k + 1, 3k + 2 với k E N*

Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5, p + 4 = 7 đều là các số nguyên tố.

Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số, trái với đề bài.

Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết chp 3 và lớn hơn 3 nên p + 4 là hợp số, trái với đề bài.

Vậy p = 3 là giá trị duy nhất phải tìm.

HT

+ Nếu p = 2 => p + 2 = 4 ∉∉ P (loại)

+ Nếu p = 3 => p + 2 = 5 ∈∈ P ; p + 4 = 7 ∈∈ P

+ Nếu p > 3 mà p là số nguyên tố nên p ⋮/⋮̸ 3 => p = 3k + 1; p = 3k + 2 (p ∈∈ N)

Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3

mà p > 3 nên p là hợp số

Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3

mà p > 3 nên p là hợp số

=> Không có giá trị nguyên tố p lớn hơn 3 nào thoả mãn.

Vậy p = 3 là giá trị duy nhất cần tìm.

22 tháng 4 2018

ta có :21 là số lẻ

=>a2 và bkhác tính chẵn lẻ

=>a và b khác tính chẵn lẻ

ta có 21 là số tự nhiên.=>a>b.mà a và b là 2 số nguyên tố ,a và b khác tính chẵn lẻ.

=>b=2

=>a2=21+22=25

=>a=5

Vậy a=5, b=2

22 tháng 4 2018

=> (a-b)x(a+b)=21                           TH1:(a-b)x(a+b)=3x7                      TH2:(a-b)x(a+b)=1x21            Vậy {a;b}={5;2};{11;10}

=>(a-b);(a+b) thuộc Ư(21)                 =>(a-b)+(a+b)=3+7                           =>(a-b)+(a+b)=1+21

Vì 21 lẻ => (a-b) và (a+b) lẻ              =>2a=10                                         => 2a=22

=>hoặc (a-b)x(a+b)=3x7                     =>a=5                                            =>a=11

  hoặc (a-b)x(a+b)= 1x21                    =>b=7-5=2                                    =>b=21-11=10

Số p có một trong ba dạng : 3k ; 3k + 1 ; 3k + 2 với k thuộc N*

Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5 ; p + 4 = 7 đều là các số nguyên tố.

Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số 

Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số.

=> p = 3

23 tháng 10 2019

vì các số nguyên tố đều là số lẻ (có số 2 là chẵn nhưng ở đây không làm cững biết là không thỏa mãn với yêu cầu đề bài rồi ) ta xét số 3

3+2=5 (là 1 số nguyên tố)

3+4=7(là 1 số nguyên tố)

vậy p=3

2 tháng 4 2020

a) VD: \(a=4;b=5\) có \(a^2+b^2=4^2+5^2=16+25=41\) là số nguyên tố 

Mà \(a+b=4+5=9\) là hợp số 

\(\Rightarrow\)Mệnh đề " Nếu \(a^2+b^2\) là số nguyên tố thì \(a+b\)cũng là số nguyên tố " sai 

b) Ta có : \(a^2-b^2=\left(a^2-ab\right)+\left(ab-b^2\right)\) 

\(\Rightarrow a^2-b^2=a\left(a-b\right)+b\left(a-b\right)\)

\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)\)

+) Nếu \(a-b>1\)

\(\Rightarrow a^2-b^2⋮\left(a+b\right)\) và \(a^2-b^2⋮\left(a-b\right)\)

\(\Rightarrow a^2-b^2\) là hợp số 

\(\Rightarrow\)Mâu thuẫn 

\(\Rightarrow a-b=1\)

\(\Rightarrow a^2-b^2=a+b\)

Mà \(a^2-b^2\) là số nguyên tố 

\(\Rightarrow a+b\) là số nguyên tố 

\(\Rightarrow\) Mệnh đề :  " Nếu \(a>b\)\(a^2-b^2\)là số nguyên tố thì \(a+b\) cũng là số nguyên tố " đúng   

22 tháng 8 2018

P2  là nguyên tố

4 tháng 1 2016

Bạn có thẻ tham khảo câu hỏi tương tự

4 tháng 1 2016

Xét số dư khi P chia cho 3 thì p + 2 và p + 4 chia cho 3 có

p chia 3 dư 1 => p + 2 chia hết cho 3

p chia 3 dư 2 => p + 4 chia hết cho 3

< = > P chia hết cho 3

< = > P = 3