Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Bạn tham khảo ở đây nhé, mình làm rồi đấy: https://olm.vn/hoi-dap/detail/211418926066.html
Bài 1:
Mình sửa lại đề 1 chút: \(x+x^3+x^5+...+x^{101}=P\left(x\right)\)
Số hạng trong dãy là: (101-1):2+1=51
P(-1)=(-1)+(-1)3+(-1)5+...+(-1)101
Vì (-1)2n+1=-1 với n thuộc Z
=> P(-1)=(-1)+(-1)+....+(-1) (có 51 số -1)
=> P(-1)=-51
a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)
hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)
hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)
V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)
b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)
\(\frac{y}{3}=4\Leftrightarrow y=12\)
\(\frac{z}{4}=4\Leftrightarrow z=16\)
V...
a)
Ta có bất đẳng thức cơ bản :\(\left|x-y\right|\ge0;\left(2-x\right)^2\ge0\Rightarrow\left|x-y\right|+\left(2-x\right)^2\ge0\)
\(\Rightarrow M\le13-0=13\)
Đẳng thức xảy ra tại x=y=2
b)
Bất đẳng thức cơ bản: \(\left(4-x^2\right)^4\ge0\Rightarrow\left(4-x^2\right)^4+7\ge7\Rightarrow N\le\frac{2}{7}\)
Đẳng thức xảy ra tại \(x=2;x=-2\)
c)
\(P=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)
Đến đây bạn sử dụng \(x-1\ge1\Rightarrow x\ge2\)
Tự tính tiếp