Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396(1-3+32-33)
=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20
b) 3S=3-32+33-34+..+399-3100
3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)
4S=1-3100
S=(1-3100):4
Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1
tích mình với
ai tích mình
mình tích lại
thanks nhiều
a) S=1-3+3^2-3^3+...+3^98-3^99
S=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)
S=-20+3^4(1-3+3^2-3^3)+...+3^96(1-3+3^2+3^3)
S=-20+3^4(-20)+...+3^96(-20)
S=-20(1+3^4+...+3^96)
=>S chia hết cho -20
b) S=1-3+3^2-3^3+...+3^98-3^99
3S=3(1-3+3^2-3^3+...+3^98-3^99)
3S=3-3^2+3^3-3^4+...+3^99-3^100
3S+S=(3-3^2+3^3-3^4+...+3^99-3^100)+(1-3+3^2-3^3+..+3^98-3^99)
4S=1-3^100
S=(1-3^100)/4
=>1-3^100 chia hết cho 4 (vì z là số nguyên)
=>3^100-1 chia hết cho 4
=>3^100 chia 4 dư 1
Câu 1 :
Ta thấy: \(1972:a\)dư \(28;2014:a\)dư \(28\)( * )
\(\Rightarrow2014-1972⋮a\)
\(\Rightarrow42⋮a\Leftrightarrow a\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)
Từ ( * ) \(\Rightarrow a>28\Rightarrow a=42\)
Vậy \(a=42.\)
Câu 2 :
a. \(3^2S=3^2.\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)
\(\Leftrightarrow9S=3^2+3^4+3^6+3^8+...+3^{2016}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2016}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)
\(\Leftrightarrow8S=3^{2016}-3^0=3^{2016}-1\)
\(\Rightarrow S=3^{2016}-1:8=\frac{3^{2016}-1}{8}\)
Vậy \(S=\frac{3^{2016}-1}{8}.\)
b. \(S=3^0+3^2+3^4+3^6+...+3^{2014}\)
\(\Rightarrow3S=3.\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)
\(\Leftrightarrow3S=3^1+3^3+3^5+3^7+...+3^{2015}\)
Nhận xét: Dãy trên có 1008 lũy thừa nên ta chia thành các nhóm, mỗi nhóm có 3 lũy thừa thì vừa tròn 336 nhóm như sau:
\(\Rightarrow3S=\left(3^1+3^3+3^5\right)+\left(3^7+3^9+3^{11}+\right)+...+\left(3^{2011}+3^{2013}+3^{2015}\right)\)
\(\Rightarrow3S=273+\left[3^6.\left(3^1+3^3+3^5\right)\right]+...+\left[3^{2010}.\left(3^1+3^3+3^5\right)\right]\)
\(\Rightarrow3S=273+\left(3^6.273\right)+...+\left(3^{2010}.273\right)\)
\(\Rightarrow3S=273.\left(1+3^6+...+3^{2010}\right)\)
\(\Rightarrow3S=7.39.\left(1+3^6+...+3^{2010}\right)⋮7\)
Mà \(\left(3,7\right)=1\Rightarrow S⋮7\left(đpcm\right).\)
Câu 1:
ta có: 1972 chia a dư 28 => 1972 - 28 chia hết cho a => 1944 chia hết cho a
2014 chia a dư 28 => 2014 - 28 chia hết cho a => 1986 chia hết cho a
=> a thuộc ƯC ( 1944;1986) = ( 2;-2;3;-3;6;-6;1;-1)
mà a là số tự nhiên và 1972;2014chia hết cho 1;-1;2;-2 ( Loại)
=> a thuộc (3;6)
mà a= 3 => 1972chia 3 dư 1( Loại)
a = 6 => 1972; 2014 chia 6 đều dư 28 (TM)
KL: a = 6
Câu2:
a) ta có: S = 3^0 + 3^2 +3^4+ 3^6 +...+ 3^2014
=> 3^2.S = 3^2 + 3^4+ 3^8 +...+3^2016
=> 9 .S - S = 3^2016 - 3^0
8.S = 3^2016-1
S = 3^2016-1/8
b) S = 3^0 + 3^2 + 3^4 +3^6 +...+ 3^2014
S = ( 3^0 + 3^2 + 3^4) + ( 3^6 + 3^8+ 3^10 ) + ...+( 3^2010+3^2012+3^2014)
S = 91 + 3^6.( 1+3^2 + 3^4) + ...+ 3^2010. (1+3^2+3^4)
S = 91. ( 1+ 3^6 + ...+ 3^2010)
S= 7.13. ( 1+3^6+...+3^2010) chia hết cho 7
=> S chia hết cho 7
Ta có: S = 1 + 3 + 32 + 33 + … + 32009
= (1 + 3) + (32 + 33) + … + (32008 + 32009)
= 4 + 32(1 + 3) + … + 32008(1 + 3)
= 4(1 + 32 + 34 + …+32008)
Vậy S chia hết cho 4. (1 điểm)
ta có:
S=(1+3)+(32+33)+(34+35)+...+(32008+32009)
=>S=4+32.(1+3)+34.(1+3)+...+32008.(1+3)
=>S=4+32.4+34.4+...+32008.4
=>S=4.(1+32+34+...+32008) chia hết cho 4
Vậy S chia hết cho 4
A=4+12+24+40+...+19404+19800
1/2A=2+6+12+...+9702+9900
1/2A=1.2+2.3+3.4+...+98.99+99.100
3/2A=1.2,3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)+99.100.(101-98)
3/2A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99+99.100.101-98.99.100
3/2A=99.100.101
A=(99.100.101):3/2=666600
B= 1+3+6+10+....+4851+4950
2B = 2+6+12+20+...+9702+9900
2B = 1.2+2.3+3.4+4.5+...+98.99+99.100
Xét A = 1.2+2.3+3.4+4.5+...+98.99+99.100
3A = 1.2.3+2.3(4-1)+3.4(5-2)+....+99.100(101-98)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+99.100.101-98.99.100
3A = 99.100.101
B = 333300
Thay A vào B ta được:
2B = 333300
B = 166650
MK chỉ làm được đến đây thôi