K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

ba,*15 có số cuối là 5

=>*15 luôn chia hết cho 5(1)

*15 có chữ số cuối là 5

=>*15 không chia hết cho 2(2)

Từ (1) (2)

=> Không có * thích hợp

a,  ko có số nào thỏa mãn vì tận cùng là 5

b, để  * 37 chia hết cho 3 

thì ( * + 3 + 7 ) chia hết cho 3

hay ( * + 10 ) chia hết cho 3

\(\Rightarrow\)* = { 2 ; 5; 8 }

vậy ta có các số 237; 537 ; 837 chia hết ch 3

c,  để 5*94 chia hết cho 3 và 9 

thì (  5 + * + 9 + 4 ) chia hết cho 3 ,9

hay ( 18 + * ) chia hết cho 3 ,9

\(\Rightarrow\) * = { 0 ; 9 }

vậy ta có các số 5094; 5994 chia hết cho 3 ,9

d, để *3747* chia hết cho 2,5thì tận cùng bằng 0

    để *37470 chia hết cho 3, 9 

thì ( * + 3 +7 + 4 + 7 + 0 )chia hết cho 3 ,9

hay ( * + 21 ) chia hết cho 3, 9

\(\Rightarrow\)  * = { 6 }

vậy ta có số 637470 chia hết cho cả 2 ,3 ,5 ,9

e, để 1*5 chia hết cho 2  ko có trường hợp nào thỏa mãn

    để 1* 5 chia hết cho 5 thì  * = { 0; 1 ;.....; 9 }

vậy * = { 0;1;..;9}

18 tháng 10 2019

Bài 1.

Nếu số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b, còn b là ước của a.

Bài 2. 

a/ 5*6 \(⋮\)3 \(\Rightarrow\) * = 1; 4; 7 ( chọn số nào tùy bạn )

b/  6*5 \(⋮\)\(\Rightarrow\)* = 8.

c/ 46* \(⋮\)3; 5 \(\Rightarrow\)* = 5.

d/  *81* \(⋮\)2; 3; 5; 9 

\(\Rightarrow\)*1 \(\in\){ 1; 2; 3; ...; 9 )   ;

*2 : ta thấy :

- Số chia hết cho 2 là số có tận cùng là các số chẵn.

- Số chia hết cho 5 là số có tận cùng là 0 hoặc 5.

- Số chia hết cho 9 là số có tổng các chữ số chia hết cho 9.

- Số chi hết cho 3 tương tự số chia hết cho 9.

\(\Rightarrow\)*81* phải là số có tận cùng là 0 hoặc 5 và tổng các số đó phải chi hết cho 9.

\(\Rightarrow\)Vậy *2 = ...

Bài 3. 

a/  Ta có :  56 \(⋮\)4, 24 \(⋮\)4.

\(\Rightarrow\)56 + 24 ) \(⋮\)4.

b/ ( làm tương tự phần a)

#Băng Băng

1/ Điền vào chỗ trống :

Nếu có số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b, còn b gọi là ước của a.

2/ Điền vào dấu * để thỏa mãn :

a/ 5*6 chia hết cho 3 :

Để số 5*6 chia hết cho 3 thì tổng các chữ số phải chia hết cho 3.

\(\Rightarrow\) ( 5 + * + 6 ) chia hết cho 3

\(\Rightarrow\) 11 + * chia hết cho 3

\(\Rightarrow\) * = 1 ; 4 ; 7

Vậy các số cần tìm là : 516 ; 514 ; 517

b/ 6*5 chia hết cho 9

Để số 6*5 chia hết cho 9 thì tổng các chữ số phải chia hết cho 9

\(\Rightarrow\) ( 6 + * + 5 ) chia hết cho 9

\(\Rightarrow\) 12 + * chia hết cho 9

\(\Rightarrow\) * = 6 

Vậy số cần tìm là : 665

c/ 46* chia hết cho cả 3 và 5

Để số 46* chia hết cho cả 3 và 5 thì tổng các chữ số phải chia hết cho 3 và chữ số tận cùng = 0 hoặc 5

\(\Rightarrow\) ( 4 + 6 + * ) chia hết cho 3 và 5

\(\Rightarrow\) 10 + * chia hết cho 3 và 5

\(\Rightarrow\) * = 5

Vậy số cần tìm là : 465

d/ *81* chia hết cho 2 ; 3 ; 5 ; 9 ( .... )

Để *81* chia hết cho 2 ; 3 ; 5 ; 9 thì tổng các chữ số phải chia hết cho 3 ; 5 và chữ số tận cùng phải = 0

\(\Rightarrow\) ( * + 8 + 1 + 0 ) chia hết cho 2 ; 3 ; 5 ; 9

\(\Rightarrow\) * + 9 chia hết cho 2 ; 3 ; 5 ; 9

\(\Rightarrow\) * = 9

Vậy số cần tìm là : 9810

3/ Không tính kết quả ....... :

a/ 56 + 24 

56  \(⋮\)4

24  \(⋮\)4

Vậy tổng này chia hết cho 4

b/ 72 - 15

72  \(⋮\)4

15  không chia hết cho 4

Vậy hiệu này không chia hết cho 4

7 tháng 3 2020

a) Để \(-1:x\)là số nguyên 

\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

b) Để \(1:x+1\)là số nguyên 

\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)

\(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)

\(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)

Vậy \(x\in\left\{-2; 0\right\}\)

c) Để \(-2:x\)là số nguyên 

\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)

Vậy \(x\in\left\{-1;-2;1;2\right\}\)

d) Để \(3:x-2\)là số nguyên 

\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)

- Ta có bảng giá trị:

\(x-2\)\(-1\)\(1\)    \(-3\)\(3\)    
\(x\)\(1\)\(3\)\(-1\)\(5\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-1;1;3;5\right\}\)

e) Ta có: \(x+8=\left(x-7\right)+15\)

- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)

\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

- Ta có bảng giá trị:

\(x-7\)\(-1\)\(1\)\(-3\)\(3\)   \(-5\)\(5\)    \(-15\)\(15\)  
\(x\)\(6\)\(8\)\(4\)\(10\)\(2\)\(12\)\(-8\)\(22\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)

f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)

- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)

\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)

- Ta có bảng giá trị:

\(x-5\)\(-1\) \(1\)     \(-19\)\(19\)  
\(x\)\(4\)\(6\)\(-14\)\(24\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-14;4;6;24\right\}\)

g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)

- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)

\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)

- Ta có bảng giá trị:

\(x-8\)\(-1\)\(1\)\(-2\)\(2\)\(-4\)\(4\)\(-8\)\(8\)\(-16\)\(16\)\(-32\)\(32\)
\(x\)\(7\)\(9\)\(6\)\(10\)\(4\)\(12\)\(0\)\(16\)\(-8\)\(24\)\(-24\)\(40\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)

h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)

- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)

\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)

- Ta có bảng giá trị:

\(x-1\)\(-1\)\(1\)   \(-7\)\(7\)   
\(x\)\(0\)\(2\)\(-6\)\(8\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-6;0;2;8\right\}\)

k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)

- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)

\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

- Ta có bảng giá trị:

\(x-2\)\(-1\)\(1\)\(-2\)\(2\)\(-3\)\(3\)\(-6\)\(6\)
\(x\)\(1\)\(3\)\(0\)\(4\)\(-1\)\(5\)\(-4\)\(8\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)

24 tháng 11 2015

Số chia hết cho 2 mà không chia hết cho 5 là:156

Số nào chia hết cho 5 mà không chia hết cho 2 là: 435

số chia hết cho cả hai và 5 là:680

22 tháng 1 2020

C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2

ta có: 

a+(a+1)+(a+2)

=3a+3

=3(a+1) => chia hết cho 3 

22 tháng 1 2020

d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4 

Ta có: a + a+1 + a+2 +a+3 +a+4

         =5a +10

        =5(a+2) => chi hết cho 5

BÀI 1:CHỨNG MINH RẰNG TỔNG CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP  THÌ CHIA  HẾT CHO 3, CÒN TỔNG CỦA 4 SỐ  TỰ NHIÊN LIÊN TIẾP  THÌ KHÔNG  CHIA HẾT CHO 4.BÀI 2:CHO 4 SỐ TỰ NHIÊN KHÔNG CHIA HẾT CHO 5,  KHI CHIA CHO 5 ĐƯỢC NHỮNG SỐ DƯ KHÁC NHAU. CHỨNG MINH RẰNG TỔNG CỦA CHÚNG CHIA HẾT CHO 5.BÀI 3:CHỨNG MINH RẰNG:a,TÍCH CỦA 2 SỐ TỰ NHIÊN LIÊN TIẾP THÌ CHIA HẾT CHO 2 b,TÍCH CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP THÌ...
Đọc tiếp

BÀI 1:CHỨNG MINH RẰNG TỔNG CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP  THÌ CHIA  HẾT CHO 3, CÒN TỔNG CỦA 4 SỐ  TỰ NHIÊN LIÊN TIẾP  THÌ KHÔNG  CHIA HẾT CHO 4.

BÀI 2:CHO 4 SỐ TỰ NHIÊN KHÔNG CHIA HẾT CHO 5,  KHI CHIA CHO 5 ĐƯỢC NHỮNG SỐ DƯ KHÁC NHAU. CHỨNG MINH RẰNG TỔNG CỦA CHÚNG CHIA HẾT CHO 5.

BÀI 3:CHỨNG MINH RẰNG:

a,TÍCH CỦA 2 SỐ TỰ NHIÊN LIÊN TIẾP THÌ CHIA HẾT CHO 2 

b,TÍCH CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP THÌ CHIA HẾT CHO 3

BÀI 4:TÌM n THUỘC N DDEER:

a,n+4 CHIA HẾT CHO N

b,3n + 7 CHIA HẾT CHO n

C,27-5N CHIA HẾT CHO n

BÀI 5:TÌM n THUỘC N ,SAO CHO:

a,n + 6 CHIA HẾT CHO  n +2

b,2n + 3 CHIA HẾT CHO  n -2

c,3n + 1 CHIA HẾT CHO 11 - 2n

BÀI 6:CHO 10k - 1 CHIA HẾT CHO 9 (vowis k > 1) chứng minh rằng:

a,102k - 1 chia hết cho 9

b,103k - 1 chia hết cho 9 

GIÚP MÌNH NHÉ ,AI NHANH NHẤT MINH TICK CHO.

NHỚ KB NỮA NHE ...

5
25 tháng 10 2018

gọi 4 số tự nhiên liên tiếp là a, a+1,a+2,a+3

tổng của 3 tự nhien liên tiếp là: a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3

tổng của 4 số tự nhiên liên tiếp là: a+a+1+a+2+a+3=4a+6=4.(a+1)+2 ko chia hết cho 4

25 tháng 10 2018

thanks bn những bn có thể tra lời giúp mình hết có được ko???

5 tháng 11 2015

 

a) ( 7 + 3) - (* + 5)    11. Đáp số : * = 5

b) (4 + 9 + 8) - (* + 5)    11. Đáp số : * = 5

c) (7 + * + 8) - (2 + 3 + 1)    11. Đáp số : * = 2

e) 519948

 

28 tháng 11 2016

ko có ai làm được câu d ak

7 tháng 3 2020

a) Để \(-5:\left(x-4\right)\)là số nguyên 

\(\Rightarrow x-4\inƯ\left(-5\right)\in\left\{\pm1; \pm5\right\}\)

- Ta có bảng giá trị:

\(x-4\)\(-1\)\(1\)    \(-5\)\(5\)   
\(x\)\(3\)\(5\)\(-1\)\(9\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-1; 3; 5; 9\right\}\)

b) Ta có: \(x+8=\left(x+7\right)+1\)

- Để \(x+8⋮x+7\)\(\Rightarrow\)\(\left(x+7\right)+1⋮x+7\)mà  \(x+7⋮x+7\)

\(\Rightarrow\)\(1⋮x+7\)\(\Rightarrow\)\(x+7\inƯ\left(1\right)\in\left\{\pm1\right\}\)

\(x+7=1\)\(\Leftrightarrow\)\(x=1-7=-6\left(TM\right)\)

\(x+7=-1\)\(\Leftrightarrow\)\(x=-1-7=-8\left(TM\right)\)

Vậy \(x\in\left\{-1; -8\right\}\)

c) Ta có: \(2x-9=\left(2x-10\right)+1=2.\left(x-5\right)+1\)

- Để \(2x-9⋮x-5\)\(\Rightarrow\)\(2.\left(x-5\right)+1⋮x-5\)mà  \(2.\left(x-5\right)⋮ x-5\)

\(\Rightarrow\)\(1⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(1\right)\in\left\{\pm1\right\}\)

\(x-5=1\)\(\Leftrightarrow\)\(x=1+5=6\left(TM\right)\)

\(x-5=-1\)\(\Leftrightarrow\)\(x=-1+5=4\left(TM\right)\)

Vậy \(x\in\left\{4; 6\right\}\)

d) Ta có: \(5x+2=\left(5x+5\right)-3=5.\left(x+1\right)-3\)

- Để \(5x+2⋮x+1\)\(\Rightarrow\)\(5.\left(x+1\right)-3⋮x+1\)mà  \(5.\left(x+1\right)⋮x+1\)

\(\Rightarrow\)\(3⋮x+1\)\(\Rightarrow\)\(x+1\inƯ\left(3\right)\in\left\{\pm1; \pm3\right\}\)

- Ta có bảng giá trị:

\(x+1\)\(-1\)\(1\)    \(-3\)\(3\)    
\(x\)\(-2\)\(0\)\(-4\)\(2\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-4;-2; 0; 2\right\}\)