Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề bài nè: \(\frac{1}{x+1}-\frac{4}{x^2-x+1}=\frac{2x^2+1}{x^3+1}\)
\(\Leftrightarrow\frac{x^2-x+1}{x^3+1}-\frac{4\left(x+1\right)}{x^3+1}=\frac{2x^2+1}{x^3+1}\)
\(\Leftrightarrow x^2-x+1-4x-4=2x^2+1\)
\(\Leftrightarrow x^2-2x^2-x-4x=1+4\)
\(\Leftrightarrow-x^2-5x=5\)
\(\Leftrightarrow-x^2-5x+5=0\)
\(\Leftrightarrow\left(\frac{5}{2}-x\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(\frac{5}{2}-x-\frac{\frac{5}{2}}{2}\right)\left(\frac{5}{2}-x+\frac{\frac{5}{2}}{2}\right)=0\)
\(\Leftrightarrow\left(\frac{-5}{2}-x\right)\left(\frac{15}{2}-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{5}{2}-x=0\\\frac{15}{2}-x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\x=\frac{15}{2}\end{cases}}\)
Vậy S\(=\left\{\frac{-5}{2};\frac{15}{2}\right\}\)
\(\left(4+2x\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}4+2x=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=-4\\x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
vậy ta chọn : B
\(a.\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\)\(0\)
\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2.\left(x+1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow2x^2-6=0\)
\(\Leftrightarrow2x^2=6\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\sqrt{3}\)
\(b.2x^3-5x^2+3x=0\)
\(\Leftrightarrow x.\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x.\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x.\left[2x.\left(x-1\right)-3.\left(x-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x-1\right).\left(2x-3\right)=0\)
Đến đây tự làm nhé có việc bận
1.
a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$
$=x^2+2x+4+\frac{10}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên.
Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$
$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$
b.
\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)
Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$
$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$
$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$
$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$
Bài 2:
$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.
$\Rightarrow P$ nguyên với mọi $x$ nguyên.
a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}=\frac{6.2}{2x\left(x+4\right)}+\frac{3x}{2x\left(x+4\right)}=\frac{12+3x}{2x\left(x+4\right)}=\frac{3\left(x+4\right)}{2x\left(x+4\right)}=\frac{3}{2x}\)
c) \(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}=\frac{-5.y}{2y\left(y+2\right)}+\frac{2\left(y-2\right)}{2y\left(y+2\right)}=\frac{-5y+2y-4}{2y\left(y+2\right)}=\frac{-3y-4}{2y\left(y+2\right)}\)
d) \(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}=\frac{x-1}{x\left(x-2y\right)}-\frac{3}{x\left(x-2y\right)}=\frac{x-1-3}{x\left(x-2y\right)}=\frac{x-4}{x\left(x-2y\right)}\)
\(\text{a) Thay a = 4 vào pt ta có:}\)
\(\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+4\right)+\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=2\)
\(\Leftrightarrow\frac{x^2-16+x^2-4}{x^2-4x+2x-8}=2\)
\(\Leftrightarrow\frac{2x^2-20}{x^2-2x-8}=2\)
\(\Leftrightarrow2x^2-20=2.\left(x^2-2x-8\right)\)
\(\Leftrightarrow2x^2-20=2x^2-4x-16\)
\(\Leftrightarrow2x^2-2x^2+4x=-16+20\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
\(\text{b) Thay x = -1 vào pt ta có:}\)
\(\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{a-1}{1}+\frac{-3}{-\left(a+1\right)}=2\)
\(\Leftrightarrow\left(a-1\right)+\frac{3}{a+1}=2\)
\(\Leftrightarrow\frac{\left(a-1\right)\left(a+1\right)+3}{a+1}=2\)
\(\Leftrightarrow\frac{a^2-1+3}{a+1}=2\)
\(\Leftrightarrow a^2+2=2.\left(a+1\right)\)
\(\Leftrightarrow a^2+2=2a+2\)
\(\Leftrightarrow a^2-2a=2-2\)
\(\Leftrightarrow a\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy để pt có nghiệm là x = 1 thì a = {0 ; 2}
\(a.Thay:a=4\Leftrightarrow\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}=\frac{2\left(x+2\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}\)
\(\Rightarrow\left(x+4\right)\left(x-4\right)+\left(x-2\right)\left(x+2\right)=2\left(x+2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-4x+4x-16+x^2+2x-2x-4=\left(2x+4\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-20=2x^2-8x+4x-16\)
\(\Leftrightarrow2x^2-20-2x^2+8x-4x+16=0\)
\(\Leftrightarrow4x-4=0\)
\(\Leftrightarrow x=1\)
\(ĐKXĐ:x\ne1;5;9\)
\(pt\Leftrightarrow\frac{2x-1}{\left(x-1\right)\left(x-5\right)}+\frac{\left(x-2\right)}{\left(x-1\right)\left(x-9\right)}=\frac{3x-12}{\left(x-9\right)\left(x+5\right)}\)
\(\Rightarrow\left(2x-1\right)\left(x-9\right)+\left(x-2\right)\left(x-9\right)=\left(3x-12\right)\left(x-1\right)\)
\(=>2x^2-x-18x+9+x^2-2x+5x-10=3x^2-12-3x+12\)
\(=>3x^2-16x-1=3x^2-15x+12\)
=>x=-13
ĐKXĐ : \(x\ne1\)biến đổi phương trình zề dạng
\(x^2+5x+4=0=>\left(x+1\right)\left(x+4\right)=0=>x=-1hx=-4\)
loại x=-1 . => x=-4
cụ thể hơn ik bạn
hơi phiền chút nhưng thông cảm nha