Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi \(\left(2n-3;n-2\right)=d\)
Ta có: \(\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(n-2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(2n-4\right)⋮d\end{cases}}\)
\(\Rightarrow\left(2n-3\right)-\left(2n-4\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\left(2n-3;n-2\right)=1\)
=> 2n-3 và n-2 nguyên tố cùng nhau
=> A tối giản
b) \(A=\frac{2n-3}{n-2}=\frac{\left(2n-4\right)+1}{n-2}=2+\frac{1}{n-2}\)
Để A nguyên => \(\frac{1}{n-2}\inℤ\Rightarrow n-2\in\left\{-1;1\right\}\)
=> \(n\in\left\{1;3\right\}\) với n nguyên
X là số dương =>2a-3 dương (vì 5>0)
=>2a-3>0
=>2a>3=>a>3/2
X là số âm =>2a-3 âm (vì 5>0)
=>2a-3<0
=>a<3/2
X là số ko âm ko dương=>X=0
=>2a-3=0
=>a=3/2
a/ Xét \(\Delta ABD\)và \(\Delta EBD\)có :
+) Cạnh \(BD\) chung.
+) Góc \(ABD\)= góc \(DBE\)( vì \(BD\) là tia phân giác của góc \(ABE\))
+) \(BA=BE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
\(\Rightarrow DA=DE\)( 2 cạnh tương ứng )
b/ Từ \(\Delta ABD=\Delta EBD\Rightarrow\)Góc \(A\)= góc \(BED\)( 2 góc tương ứng )
Mà góc \(A=90^o\) nên góc \(EBD=90^o\)
#Panda
bạn tự vẽ hình
a, ta có AB^2+AC^2=3^2+4^2=9+16=25
BC^2=5^2=25
do đó tam giác ABC vuông tại A ( theo pitago)
b,Xét tam giác ADB và tam giác EDB có góc A=góc E ( cùng bằng 90 độ)
BD chung
góc ABD=góc EBD ( BD là pg của góc B)
do đó tam giác ADB=tam giác EDB ( cạnh huyền góc nhọn)
=> DA=DE(2 cạnh tương ứng)
c,tự cm