K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2015

2. 22-(-5+9)

=22-14

=8

31 tháng 12 2015

30 tháng 8 2015

1 ) ( x^2 + 1 )( x^2 + 5 ) = 0 

=> x^2 + 1 = 0 hoặc x^2 + 5 = 0 

=> x^2 = -1 hoặc x^2 = -5 ( loại vì  x^2 >= 0 ) 

2) =>20x^2 - 4x + 20x - 20x^2 = 16 

=> 16x = 16 

=> x = 1 

3) ( 100 -a )( 100- b ) = 10000 - 100b - 100a - ab 

                                = 100 ( 100 -a - b ) - ab 

=> x = -1 

3 tháng 8 2017

sai

đọc kĩ đề bài 1 đi

số giá trị của x!

vậy9 kết quả phải là 0 vì x ko có kết quả nào thõa mản dk trên

30 tháng 12 2018

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)'

\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

b tự làm nốt nhé~

30 tháng 12 2018

\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(M=x^3+3^3-x^3-54+x\)

\(M=x+27-54\)

\(M=x+27-54\)

\(M=7-27\)

\(M=-20\)

18 tháng 9 2015

Ta sử dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right).\)

Theo giả thiết \(a+b+c=9,a^2+b^2+c^2=53\to81=53+2\left(ab+bc+ca\right)\to\)

\(ab+bc+ca=\frac{81-53}{2}=\frac{28}{2}=14\to A=3\left(ab+bc+ca\right)=52.\)

2.  Ta có \(4x^2-12x-1=-10\to\left(2x\right)^2-2\cdot2x\cdot3+9=0\to\left(2x-3\right)^2=0\to2x-3=0\to x=\frac{3}{2}.\)

15 tháng 12 2019

\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)

\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)

\(c,\)Tại x = 6, ta có :

\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)

Vậy tại x = 6 thì B = 3 

\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)

Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)

Th2: \(x+3=-1\Rightarrow x=-4\)

Th3 : \(x+3=3\Rightarrow x=0\)

TH4 \(x+3=-3\Rightarrow x=-6\)

Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)

15 tháng 12 2019

a)Để B đc xác định thì :x+3 khác 0

                                     x-3 khác 0

                                     x^2-9 khác 0

=>x khác -3

    x khác 3

b) Kết Qủa BT B là:3/x+3

16 tháng 12 2019

a

\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)

b

\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)

\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)

c

Với \(x=4\Rightarrow A=-3\)

d

Để A nguyên thì \(\frac{3}{x-3}\) nguyên

\(\Rightarrow3⋮x-3\)

 Làm nốt.

16 tháng 12 2019

toi moi lop 5