K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Lời giải:

\(\lim\limits_{x\to 2-}y=\lim\limits_{x\to 2-}\frac{\sqrt{4-x^2}}{(x-2)(x-3)}=\lim\limits_{x\to 2-}\frac{\sqrt{2+x}}{\sqrt{2-x}(x-3)}=-\infty \) nên $x=2$ là TCĐ 

Vì \(x\in [-2;2)\) nên không tồn tại \(\lim\limits_{x\to +\infty }y\) nên đths không có TCN 

Còn $x=3$ không thể là TCĐ vì tại $x=3$ thì $\sqrt{4-x^2}$ không tồn tại .

 

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Đáp án A

NV
21 tháng 9 2021

1.

\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)

Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:

\(\left|-1-\left(-m+2\right)\right|>3\)

\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)

2.

\(y'=-3x^2+6x+m-1\)

\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)

Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)

Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:

\(\left|x_1-x_2\right|>1\)

\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)

\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)

\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)

Có đúng 1 giá trị nguyên âm của m thỏa mãn

NV
21 tháng 9 2021

3.

\(y'=x^2+6\left(m-1\right)x+9\)

\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)

\(\left|x_1-x_2\right|=6\sqrt{3}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)

\(\Leftrightarrow36\left(m-1\right)^2-36=108\)

\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Có 1 giá trị nguyên âm của m thỏa mãn

NV
12 tháng 7 2021

8.

Hàm có 1 điểm cực đại \(\left(x=-1\right)\)

9. 

Hàm có 1 điểm cực tiểu (\(x=-1\))

14.

\(y'=\dfrac{2x\left(x+1\right)-\left(x^2+3\right)}{\left(x+1\right)^2}=\dfrac{x^2+2x-3}{\left(x+1\right)^2}\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Xét dấu y' trên trục số:

undefined

Từ dấu của y' ta thấy \(x=1\) là điểm cực tiểu

\(\Rightarrow y_{CT}=y\left(1\right)=2\)

NV
21 tháng 9 2021

31.

\(y'=\dfrac{1+m}{\left(x+1\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi:

\(\dfrac{1+m}{\left(x+1\right)^2}>0\Rightarrow m>-1\) (C)

32.

\(y'=\dfrac{4-m^2}{\left(x+4\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi:

\(4-m^2>0\Rightarrow-2< m< 2\)

\(\Rightarrow m=\left\{-1;0;1\right\}\)

Có 3 giá trị nguyên của m

NV
21 tháng 9 2021

33.

\(y'=\dfrac{m-1}{\left(x+1\right)^2}\)

Hàm đồng biến trên từng khoảng xác định khi:

\(m-1>0\Rightarrow m>1\)

34.

\(y'=\dfrac{2m-1}{\left(x+2m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}2m-1>0\\-2m>-3\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2}< m< \dfrac{3}{2}\)

\(\Rightarrow m=1\)

Có 1 giá trị nguyên của m

NV
18 tháng 5 2021

Gọi R là bán kính (C) \(\Rightarrow2\pi R=12\pi\Rightarrow R=6\)

Gọi \(J\) là tâm (C) \(\Rightarrow IJ\perp\left(P\right)\Rightarrow IJ=d\left(I;\left(P\right)\right)\)

\(d\left(I;\left(P\right)\right)=\dfrac{\left|2.\left(-2\right)-1.1+2.3-10\right|}{\sqrt{2^2+\left(-1\right)^2+2^2}}=3\)

\(\Rightarrow IJ=3\)

Áp dụng định lý Pitago:

\(r^2=IJ^2+R^2=45\Rightarrow r=3\sqrt{5}\)

​Đường tròn (C)(C) có bán kính R = 6R=6.

d(I,(P))=3. 

Mặt cầu  (S) cắt mặt phẳng (P) theo một đường tròn 

(C)(C) nên có bán kính: 

r=\(\sqrt{R^2+(d(I,(P)))^2 } =3\sqrt{5} \)(P(P) theo một đường tròn (C)(C) nên có bán kính:(S)(S) cắt mặt phẳng (P)
 

4 tháng 7 2016

nhờ người ta giải mà cười hihi

em thì bó tay chấm chữ com vào ăn

4 tháng 7 2016

TXĐ: D=R

\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)

\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)

Đặt t = \(3^{x^2+x-1}\)      (t>0)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)

 

10 tháng 2 2022

Ta có: \(\int\dfrac{xdx}{x^2+3}\)

Đặt \(u=x^2+3\left(u>0\right)\) 

Có \(du=2xdx\)

\(\Rightarrow\int\dfrac{xdx}{x^2+3}=\)\(\int\dfrac{du}{2u}=\dfrac{1}{2}ln\left(u\right)=\dfrac{1}{2}ln\left(x^2+3\right)\)

10 tháng 2 2022

Cảm ơn bạn nhiều 🥰

6 tháng 8 2021

Mình nghĩ câu nói này của Bác mang ý nghĩa: Làm việc gì cũng phải chắc chắn, có lý luận, có hiểu biết thì ta mới giải được vấn đề. 

Đúng k mình nha

#Hoctot

24 tháng 8 2021

“Lý luận như cái kim chỉ nam, nó chỉ phương hướng cho chúng ta trong công việc thực tế.

Không có lý luận thì lúng túng như nhắm mắt mà đi…

Có kinh nghiệm mà không có lý luận, cũng như một mắt sáng, một mắt mờ…

Lý luận mà không áp dụng vào thực tế là lý luận suông”.

Vai trò quan trọng như vậy, nhưng “kém lý luận” vẫn là căn bệnh đang tồn tại ở một bộ phận không nhỏ cán bộ, đảng viên.

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

4 tháng 2 2016

đặt x =tant 

là xong trong 1 nốt nhạc

4 tháng 2 2016

 

Tách sin^2 = 1-cos^2=(1-cos)(1+cos)

 


Dùng phương pháp đồng nhất hệ số, đưa về thế này

1/cos +1/2(1-cos) -1/2(1+cos)