K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

Đáp án: 1

TA CÓ:

E=1+(2-3-4+5)+(6-7-8+9)+.......+(2018-2019-2020+2021)

E=1+0+0+0+.....+0

E=1

K CHO MIK NHAAAAA

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:
a.

$5+3(-7)+4:(-2)=5+(-21)+(-2)=5-(21+2)=5-23=-(23-5)=-18$

b.

$1-2-3+4+5-6-7+8+....+2017-2018-2019+2020+2021$

$=(1-2-3+4)+(5-6-7+8)+....+(2017-2018-2019+2020)+2021$

$=0+0+....+0+2021=2021$

4 tháng 4 2020

\(A=1-3+5-7+......-2019+2021-2023\)

\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)

\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)

\(A=-2.506\)

\(A=-1012\)

4 tháng 4 2020

*) A=(1-3)+(5-7)+....+(2021-2023)

<=> A=-2+(-2)+...+(-2)

Dãy A có (2023-1):2+1=1012 số số hạng 

=> Có 506 số (-2)

=> A=(-2).506=-1012

31 tháng 3 2020

a)1420

b)100

c) hỏi người khác í 

d)-2022

15 tháng 1 2020

Sửa đề :

1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 - ... + 2018 - 2019 - 2020 + 2021

= 1 + ( 2 - 3 - 4 + 5 ) + ( 6 - 7 - 8 + 9 ) + ... + ( 2018 - 2019 - 2020 + 2021 )

= 1 + 0 + 0 + ... + 0

= 1

1 tháng 10 2021

hơ hơ.sao chép

4 tháng 8 2017

a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)

= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)

= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)

= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)

= 1
@Nguyen Thi Ngoc Linh

25 tháng 12 2023

Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023

=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)

=0+0+...+0+(-1-2023)

=-2024

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)