K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

1) \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)

\(=ab\left(a+b\right)-b^2c-bc^2+a^2c-ac^2\)

\(=ab\left(a+b\right)-c\left(b^2-a^2\right)-c^2\left(a+b\right)\)

\(=ab\left(a+b\right)-c\left(a+b\right)\left(a-b\right)-c^2\left(a+b\right)\)

\(=\left(a+b\right)\left(ab-ac+bc-c^2\right)\)

\(=\left(a+b\right)\left[a\left(b-c\right)+c\left(b-c\right)\right]\)

\(=\left(a+b\right)\left(b-c\right)\left(a+c\right)\)

24 tháng 10 2019

Sửa đề: Cho \(a^2+b^2+c^2=m\)

Tính: \(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)

Giải: 

Ta có: \(\left(x+y-z\right)^2=\left(x+y\right)^2-2\left(x+y\right).z+z^2=x^2+y^2+z^2+2xy-2xz-2yz\)

Ứng dụng vào bài trên:

\(A=\left[\left(2a\right)^2+\left(2b\right)^2+c^2+2\left(2a\right)\left(2b\right)-2\left(2a\right)c-2\left(2b\right)c\right]\)

\(+\left[\left(2b\right)^2+\left(2c\right)^2+a^2+2\left(2b\right)\left(2c\right)-2\left(2b\right)a-2\left(2c\right)a\right]\)

\(+\left[\left(2c\right)^2+\left(2a\right)^2+b^2+2\left(2c\right)\left(2a\right)-2\left(2c\right)b-2\left(2a\right)b\right]\)

\(=4a^2+4b^2+c^2+8ab-4ac-4bc\)

\(+4b^2+4c^2+a^2+8bc-4ba-4ca\)

\(+4c^2+4a^2+b^2+8ca-4cb-4ab\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

\(=9m\).

11 tháng 1 2020

1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)

\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)

\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)

\(=2\left(c-1\right)\left(c-2\right)+5\le5\) 

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.

2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)

3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!

11 tháng 1 2020

Mình xin lỗi vì viết sai nhé, phải là:

1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR: 

24 tháng 10 2019

\(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)

\(=\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)+2ab-2ac\)

\(=a\left(a-2b+2c\right)+2ab-2ac\)

\(=a^2-2ab+2ac+2ab-2ac\)

\(=a^2\)

24 tháng 10 2019

\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)

\(=\left(3x+1-3x-5\right)^2\)

\(=\left(-4\right)^2=16\)

2 tháng 10 2019

Ko bt có đúng ko nữa nhưng theo mình thì:

P=a2b +b2c+ c2a

=bc(a2 + b +ca)

=bc[(a2 + ca) + b]

=bc[a(a+b+c)]

Thay a + b + c = 1

bc . a.1

=abc

Mik ko chắc nx. Ai bt thì giải hộ thanghoa

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi