Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
\(=ab\left(a+b\right)-b^2c-bc^2+a^2c-ac^2\)
\(=ab\left(a+b\right)-c\left(b^2-a^2\right)-c^2\left(a+b\right)\)
\(=ab\left(a+b\right)-c\left(a+b\right)\left(a-b\right)-c^2\left(a+b\right)\)
\(=\left(a+b\right)\left(ab-ac+bc-c^2\right)\)
\(=\left(a+b\right)\left[a\left(b-c\right)+c\left(b-c\right)\right]\)
\(=\left(a+b\right)\left(b-c\right)\left(a+c\right)\)
Sửa đề: Cho \(a^2+b^2+c^2=m\)
Tính: \(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
Giải:
Ta có: \(\left(x+y-z\right)^2=\left(x+y\right)^2-2\left(x+y\right).z+z^2=x^2+y^2+z^2+2xy-2xz-2yz\)
Ứng dụng vào bài trên:
\(A=\left[\left(2a\right)^2+\left(2b\right)^2+c^2+2\left(2a\right)\left(2b\right)-2\left(2a\right)c-2\left(2b\right)c\right]\)
\(+\left[\left(2b\right)^2+\left(2c\right)^2+a^2+2\left(2b\right)\left(2c\right)-2\left(2b\right)a-2\left(2c\right)a\right]\)
\(+\left[\left(2c\right)^2+\left(2a\right)^2+b^2+2\left(2c\right)\left(2a\right)-2\left(2c\right)b-2\left(2a\right)b\right]\)
\(=4a^2+4b^2+c^2+8ab-4ac-4bc\)
\(+4b^2+4c^2+a^2+8bc-4ba-4ca\)
\(+4c^2+4a^2+b^2+8ca-4cb-4ab\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
\(=9m\).
1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)
\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)
\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)
\(=2\left(c-1\right)\left(c-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.
2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)
3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!
Mình xin lỗi vì viết sai nhé, phải là:
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR:
\(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)+2ab-2ac\)
\(=a\left(a-2b+2c\right)+2ab-2ac\)
\(=a^2-2ab+2ac+2ab-2ac\)
\(=a^2\)
\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x+1-3x-5\right)^2\)
\(=\left(-4\right)^2=16\)
Ko bt có đúng ko nữa nhưng theo mình thì:
P=a2b +b2c+ c2a
=bc(a2 + b +ca)
=bc[(a2 + ca) + b]
=bc[a(a+b+c)]
Thay a + b + c = 1
bc . a.1
=abc
Mik ko chắc nx. Ai bt thì giải hộ
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0
\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)
\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)