K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )

119 ≡  −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )

69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )

119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )

69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )

Suy ra A ⋮ 17 (2)

Lại có A là số chẵn (Vì \(69^{220^{119}}\)\(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)

Suy ra: A ⋮ 2 (3)

Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102

29 tháng 7 2021

thank youyeu

16 tháng 9 2015

avt249547_60by60.jpgNguyễn Ngọc Quý có nhầm lẫn gì không vậy. Bạn nói đây là bạn toán khó nhất mà của lớp 1 à !

8 tháng 9 2015

Vaocau hoi tuong tu **** mik nha Nguyễn Ngọc Quý

Phải là chia hết cho 44 nha 

Ta có: \(19^{19}+69^{19}\)

\(=\left(19+69\right)\left(19^{18}-19^{17}.69+...+69^{18}\right)\)

\(=88\left(19^{18}-19^{17}.69+...+69^{19}\right)\)

\(=44.2.\left(19^{18}-19^{17}.69+...+69^{18}\right)\)chia hết cho 44

5 tháng 10 2019

Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

5 tháng 10 2019

Em tham khảo link: Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

15 tháng 10 2022

a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)

\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)

b: \(=69\left(69-5\right)=69\cdot64⋮32\)

 

25 tháng 11 2018

19^19 + 69^19 chia hết cho 44
Ta có a^n + b^n =(a + b)[a^(n - 1) - a^(n - 2).b + a^(n - 3).b^2 - ......+b^(n - 1) với n lẻ
19^19 + 69^19 = (19 + 69)(19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
Vì 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44.

25 tháng 11 2018

\(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ (bạn không cần chứng minh đâu)

Ta có: \(\left(19^{19}+69^{19}\right)⋮\left(19+69\right)\Rightarrow19^{19}+69^{19}⋮88\Rightarrow19^{19}+69^{19}⋮44\)

14 tháng 3 2018

a)Đặt \(A=8^5+2^{11}\)

\(A=\left(2^3\right)^5+2^{11}\)

\(A=2^{15}+2^{11}\)

\(A=2^{11}\left(2^4+1\right)\)

\(A=2^{11}\cdot17⋮17\left(đpcm\right)\)