K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2015

avt249547_60by60.jpgNguyễn Ngọc Quý có nhầm lẫn gì không vậy. Bạn nói đây là bạn toán khó nhất mà của lớp 1 à !

8 tháng 9 2015

Vaocau hoi tuong tu **** mik nha Nguyễn Ngọc Quý

28 tháng 7 2021

220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )

119 ≡  −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )

69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )

119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )

69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )

Suy ra A ⋮ 17 (2)

Lại có A là số chẵn (Vì \(69^{220^{119}}\)\(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)

Suy ra: A ⋮ 2 (3)

Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102

29 tháng 7 2021

thank youyeu

15 tháng 10 2022

a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)

\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)

b: \(=69\left(69-5\right)=69\cdot64⋮32\)

 

21 tháng 2 2017

bạn Tiến dũng trương giải tào lao quá, không biết làm thì đừng cmt linh tinh nhé!

19 là số nguyên tố thì \(19^n\)làm sao chia hết cho 44 được

Giải: CHÚ Ý: mình dùng dấu = cho mod vì không gõ được

Ta có: \(19^5\)=-1 (mod 44) => \(19^{19}=\left(-1\right)^3.19^4=-37=7\left(mod44\right)\)

\(69^5=11\left(mod44\right)\Rightarrow69^{69}=1^{13}.69^4=37\left(mod44\right)\)

=> \(19^{19}+69^{69}=7+37=0\left(mod44\right)\)

vậy chia hết cho 44

Cách 2:

Ta có: \(A=69^{69}+19^{19}=\left(69^{69}+19^{69}\right)-\left(19^{69}-19^{19}\right)\)

Ta có: \(69^{69}+19^{69}⋮\left(19+69\right)\Rightarrow69^{69}+19^{69}⋮44\)

Phải CM \(19^{69}-19^{19}⋮44\), Thật vậy

\(B=19^{19}\left(19^{50}-1\right)\)

do 19 lẻ nên \(19^2=1\left(mod4\right)\)\(\Rightarrow19^{50}=1\left(mod4\right)\Rightarrow19^{50}-1⋮4\)

Có: \(19^{50}=8^{50}\left(mod11\right)\)mà 

\(8^5=1\left(mod11\right)\Rightarrow8^{50}=1\left(mod11\right)\Leftrightarrow19^{50}=1\left(mod11\right)\Rightarrow19^{50}-1⋮11\)

Mà (4,11)=1

=> \(19^{69}-19^{19}⋮44\)

=> A chia hết cho 44 (ĐPCM)

20 tháng 2 2017

(19^9) mod 44=0 suy ra 19^19 chia het cho 44

(69^6) mod 44=0 suy ra 69^69 chia het cho 44

suy ra .....19^19+69^69 chia het cho 44

13 tháng 4 2017

a) ko chia hết đâu bạn xem lại nhá

b)19^19+69^19=(19+69)(19^18+19^17.69+...+19.69^17+69^18=88(....) (đây là hđt mở rộng bạn xem thêm ở đây Đại số/Hằng đẳng thức đại số – Wikibooks tiếng Việt)

chia hết cho 88 mà 88 chia hết cho 44 => 19^19+69^19 chia hết cho 44