Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\dfrac{x^2\left(x^2+5x-3\right)-2x\left(x^2+5x-3\right)-4\left(x^2+5x-3\right)+14x-12+ax+y\left(b\right)}{x^2+5x-3}\)\(A=x^2-2x-4+\dfrac{14x-12+ax+y\left(b\right)}{x^2+5x-3}\)
nếu b=y
\(\left\{{}\begin{matrix}a=-14\\b=12\end{matrix}\right.\)
nếu b khác y
a =-14 ; y =12 với mọi b
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
Áp dụng định lý Bezout :
x3-3x2+5x+2a chia hết cho x-2
\(\Leftrightarrow2^3-3.2^2+5.2+2a=0\)
\(\Leftrightarrow6+2a=0\Leftrightarrow a=-3\)
Vậy a = -3 thì x3-3x2+5x+2a chia hết cho x-2
Áp dụng định lý Bezout :
2x3-x2+ax+b chia hết cho x2-1
\(\Leftrightarrow\orbr{\begin{cases}2.1^3-1^2+a.1+b=0\\2.\left(-1\right)^3-\left(-1\right)^2+a.\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b=-1\\a-b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=1\end{cases}}\)
a=-14;b=12
a+b=-2