\(^O\),∠B-∠C=20\(^O\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACB có

góc ABD=góc ACB

góc BAD chung

Do đo: ΔABD đồng dạng với ΔACB

b: Ta có: ΔABD đồng dạng với ΔACB

nên AD/AB=AB/AC
=>AD/2=2/4=1/2

=>AD=1cm

=>DC=3cm

25 tháng 6 2017

kẻ BH vuông góc với CD

ta có ^D +^H =180o (^D =90o, ^H= 90o)

mà 2 góc này nằm ở vị trí trong cùng phía => AD//BH(2 cạnh bên)

=> AD =BH =2cm , AB =DH = 2cm

ta có DC = 4cm và DH+HC =DC

mà DH =2cm

=> HC =2cm

ta có tam giác BHC vuông cân tại H ( BH =CH ,^H = 90o)

=> ^C =^B ( 2 góc đáy ) lại có ^C+^B+^H =180o(tổng 3 góc tam giác)

=> ^C =^B = 45o

=> ^B = 135o

16 tháng 1 2020

A B C D 2cm E 4cm 45

Kẻ \(BE\perp CD\)

Xét \(\Delta BEC\)vuông tại E có :

\(\widehat{BEC}=90^o\) ( theo cách vẽ )

Mà \(\widehat{C}=45^o\)(gt)

\(\Rightarrow\Delta BEC\)vuông cân tại E

\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )

Hay \(BE\perp DC\)(1)

Vì \(\widehat{D}=90^o\left(gt\right)\)

\(\Rightarrow AD\perp DC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )

Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)

\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)

 \(\Rightarrow AB=DE=2cm\)

Ta có \(EC=CD-BE\)

\(\Rightarrow EC=4-2\)

\(\Rightarrow EC=2cm\)

Mà BE = EC (cmt)

\(\Rightarrow BE=2cm\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)

Vậy \(S_{ABCD}=6\left(cm^2\right)\)

Chúc bạn học tốt !!!

14 tháng 6 2020

A D B C

a, xét \(\Delta ABD\)\(\Delta BDC\) ta có :

∠ABD = ∠BDC ( slt , AB//DC)

\(\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{4}=\frac{4}{8}=\frac{1}{2}\)

\(\Delta ABD\) ~ \(\Delta BDC\) ( c - g - c )

∠DAB = ∠DBC = 90o

b, áp dụng pytago vào \(\Delta DBC\) vuông ta có :

DC2 = BD2 + BC2 ⇌ BC2 = DC2 - BD2 = 64 - 16 = 48cm

⇒ BC = \(\sqrt{48}\)

14 tháng 6 2020

Sao đoạn \(\widehat{DAB}=\widehat{DBC}=90^o\) được vậy

7 tháng 5 2021

a) Vì tứ giác ABCD là hình thang vuông 

=> AB song song CD

=> góc ABD = góc BDC

Xét tam giác ABD và tam giác BDC có:

góc BAD = góc CBD (=90*)

Góc ABD = Góc BDC ( cmt)

=> tam giác ABD đồng dạng tam giác BDC (g.g)

b) Vì tam giác ABD vuông tại A nên theo ĐL Py-ta-go ta có:

  BD2 = AB2 + AD2

=> BD2 = 4+ 32

=> BD= 25

=> BD = 5 (cm)

Vì tam giác ABD đồng dạng tam giác BDC ( cm ý a)

=> AB/BD = BD/DC ( 2 cặp cạnh tương ứng)

=> 4/5 = 5/DC

=> DC = 6,25

8 tháng 5 2021

c) Kẻ \(AH\perp BD\).

Dẽ thấy:  \(\frac{S_{ADE}}{S_{ABD}}=\frac{\frac{AH.DE}{2}}{\frac{AH.BD}{2}}=\frac{DE}{BD}\).

Vì \(AB//CD\)( do hình thang ABCD vuông tại A và D).

Và E là giao điểm của AC và BD.

\(\Rightarrow\frac{DE}{BE}=\frac{CD}{AB}\)(hệ quả của dịnh lí Ta-lét).

\(\Rightarrow\frac{DE}{BE}=\frac{6,25}{4}=\frac{25}{16}\)(thay số).

\(\Rightarrow\frac{DE}{BE+DE}=\frac{25}{16+25}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{DE}{BD}=\frac{25}{41}\).

Do đó \(\frac{S_{ADE}}{S_{ABD}}=\frac{25}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.S_{ABD}}{41}=\frac{25.\frac{AB.AD}{2}}{41}=\frac{25.\frac{4.3}{2}}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.6}{41}=\frac{150}{41}\left(cm^2\right)\).
vậy \(S_{ADE}=\frac{150}{41}cm^2\).

30 tháng 4 2018

a)  Xét  \(\Delta HAC\)và   \(\Delta ABC\)có:

    \(\widehat{AHC}=\widehat{BAC}=90^0\)

    \(\widehat{C}\)  chung

suy ra:   \(\Delta HAC~\Delta ABC\)

b)   Áp dụng định lý Pytago vào tam giác vuông ABC 

      \(BC^2=AB^2+AC^2\)

\(\Rightarrow\) \(BC^2=12^2+16^2=400\)

\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm

 \(\Delta ABC\) có  \(AD\)là phân giác  \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)

suy ra:  \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)           

             \(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)

c)   Xét  \(\Delta CED\)và    \(\Delta CAB\)có:

      \(\widehat{CED}=\widehat{CAB}=90^0\)

      \(\widehat{ECD}\) chung

suy ra:   \(\Delta CED~\Delta CAB\)

\(\Rightarrow\)\(\frac{CE}{AC}=\frac{ED}{AB}\)

\(\Rightarrow\)\(CE.AB=AC.ED\)  (đpcm)

1 tháng 5 2018

thực ra mk cần nhất là ý d còn lại mk tự lm theo cách của mk rùi có bn nào tốt bụng giúp mk vs