K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2020

A D B C

a, xét \(\Delta ABD\)\(\Delta BDC\) ta có :

∠ABD = ∠BDC ( slt , AB//DC)

\(\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{4}=\frac{4}{8}=\frac{1}{2}\)

\(\Delta ABD\) ~ \(\Delta BDC\) ( c - g - c )

∠DAB = ∠DBC = 90o

b, áp dụng pytago vào \(\Delta DBC\) vuông ta có :

DC2 = BD2 + BC2 ⇌ BC2 = DC2 - BD2 = 64 - 16 = 48cm

⇒ BC = \(\sqrt{48}\)

14 tháng 6 2020

Sao đoạn \(\widehat{DAB}=\widehat{DBC}=90^o\) được vậy

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

a) Có AB // CD => \(\widehat {AB{\rm{D}}} = \widehat {B{\rm{D}}C}\)

- Xét  ΔABD và ΔBDC

Có \(\widehat {AB{\rm{D}}} = \widehat {B{\rm{D}}C}{,^{}}\widehat {DAB} = \widehat {DBC}\)

=> ΔABD ∽ ΔBDC (g.g)

b) Có \(\frac{{AB}}{{B{\rm{D}}}} = \frac{{12}}{{24}} = \frac{1}{2}\)

ΔABD ∽ ΔBDC với tỉ số \(\frac{1}{2}\)

=> \(\frac{3}{{BC}} = \frac{4}{{DC}} = \frac{1}{2}\)

=> BC=6 (cm)

     DC=8 (cm)

a: Xét ΔABD và ΔBDC có

AB/BD=BD/DC

\(\widehat{AB}D=\widehat{BDC}\)

Do đó: ΔABD\(\sim\)ΔBDC

b: ta có: ΔABD\(\sim\)ΔBDC

nên \(\widehat{BAD}=\widehat{DBC}=90^0\)

\(BC=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)