Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét \(\Delta ABD\) và \(\Delta BDC\) ta có :
∠ABD = ∠BDC ( slt , AB//DC)
\(\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{4}=\frac{4}{8}=\frac{1}{2}\)
⇒ \(\Delta ABD\) ~ \(\Delta BDC\) ( c - g - c )
→ ∠DAB = ∠DBC = 90o
b, áp dụng pytago vào \(\Delta DBC\) vuông ta có :
DC2 = BD2 + BC2 ⇌ BC2 = DC2 - BD2 = 64 - 16 = 48cm
⇒ BC = \(\sqrt{48}\)
a) Ta có:
\(\frac{AB}{BD}=\frac{4}{6}=\frac{2}{3}\); \(\frac{BD}{DC}=\frac{6}{9}=\frac{2}{3}\).
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{3}\).
Xét \(\Delta ABD\)và \(\Delta BDC\)có:
\(\widehat{ABD}=\widehat{BDC}\)(vì \(AB//CD\)).
\(\frac{AB}{BD}=\frac{BD}{DC}\)(chứng minh trên).
\(\Rightarrow\Delta ABD~\Delta BDC\left(c.g.c\right)\)(điều phải chứng minh).