K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2023

1, VTCP \(\overrightarrow{AC}=\left(-2;2\right)\); A(4;3)

PTTS : \(\left\{{}\begin{matrix}x=4+2t\\y=3-2t\end{matrix}\right.\)( t là tham số ) 

VTPT ( -2;-2) ; A(4;3) 

PTTQ : \(-2\left(x-4\right)-2\left(y-3\right)=0\Leftrightarrow-2x-2y+14=0\Leftrightarrow x+y-7=0\)

2, AB :  \(VTCP\overrightarrow{AB}=\left(-10;-2\right)\)

Do delta vuông góc với AB nên VTCP AB là VTPT đt delta 

delta \(-10\left(x-2\right)-2\left(y-5\right)=0\Leftrightarrow-10x-2y+30=0\Leftrightarrow5x+y-15=0\)

3, pt đường tròn có dạng  \(\left(x+6\right)^2+\left(y-1\right)^2=R^2\)

do pt (C1) thuộc A nên \(\left(4+6\right)^2+\left(3-1\right)^2=R^2\Leftrightarrow104=R^2\)

=> \(\left(C1\right):\left(x+6\right)^2+\left(y-1\right)^2=104\)

4, tâm \(I\left(3;4\right)\)

\(R=\dfrac{AC}{2}=\dfrac{\sqrt{4+4}}{2}=\dfrac{\sqrt{8}}{2}\Rightarrow R^2=2\)

\(\left(C2\right):\left(x-3\right)^2+\left(y-4\right)^2=2\)

 

1: vecto AC=(-1;-7)

=>VTPT là (-7;1)

PTTS là:

x=3-t và y=6-7t

Phương trình AC là:

-7(x-3)+1(y-6)=0

=>-7x+21+y-6=0

=>-7x+y+15=0

2: Tọa độ M là:

x=(3+2)/2=2,5 và y=(6-1)/2=2,5

PTTQ đường trung trực của AC là:

-7(x-2,5)+1(y-2,5)=0

=>-7x+17,5+y-2,5=0

=>-7x+y+15=0

3: \(AB=\sqrt{\left(-1-3\right)^2+\left(3-6\right)^2}=5\)

Phương trình (A) là:

(x-3)^2+(y-6)^2=AB^2=25

 

25 tháng 3 2023

Dạ em cảm ơn ạ 

 

1: vecto AC=(-2;2)

=>VTCP là (-2;2); vtpt là (2;2)

2: vecto AB=(-10;-2)=(5;1)

=>VTPT của Δ là (5;1)

vtcp của Δ là (-1;5)

NV
6 tháng 3 2023

\(\overrightarrow{AC}=\left(-2;2\right)=2\left(-1;1\right)\) nên đường thẳng AC nhận \(\left(-1;1\right)\) là 1 vtcp và \(\left(1;1\right)\) là 1 vtpt

b.

\(\overrightarrow{BA}=\left(10;2\right)=2\left(5;1\right)\) ; mà \(\Delta\perp AB\) nên \(\Delta\) nhận (5;1) là 1 vtpt và \(\left(1;-5\right)\) là 1 vtcp

1: =>2x^2-7x-11=x^2-5x+4

=>x^2-2x-15=0

=>(x-5)(x+3)=0

=>x=5 hoặc x=-3

2: =>x>=1 và 25-x^2=x^2-2x+1

=>x^2-2x+1-25+x^2=0 và x>=1

=>2x^2-2x-24=0 và x>=1

=>x=4

NV
5 tháng 3 2023

1.

Bình phương hai vế pt đã cho ta được:

\(x^2-5x+4=2x^2-7x-11\)

\(\Rightarrow x^2-2x-15=0\)

\(\Rightarrow x=5\) hoặc \(x=-3\)

Thay lần lượt hai giá trị trên vào pt đã cho ta thấy đều thỏa mãn

Vậy nghiệm của pt là \(S=\left\{-3;5\right\}\)

2.

Bình phương 2 vế pt đã cho:

\(25-x^2=\left(x-1\right)^2\)

\(\Rightarrow25-x^2=x^2-2x-1\)

\(\Rightarrow2x^2-2x-24=0\)

\(\Rightarrow x=4\) hoặc \(x=-3\)

Lần lượt thay các giá trị trên vào pt đã cho ta thấy chỉ có \(x=4\) thỏa mãn

Vậy nghiệm của pt đã cho là \(S=\left\{4\right\}\)

1: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-4}{2}=-2\\y=-\dfrac{4^2-4\cdot1\cdot\left(-5\right)}{4}=-9\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                        -2                            +\(\infty\)
y-\(\infty\)                        -9                            +\(\infty\)

2:

a: Hàm số đồng biến khi x>-2 và nghịch biến khi x<-2

b: Hàm số ko có giá trị lớn nhất

y=x^2+4x-5

=(x+2)^2-9>=-9

Dấu = xảy ra khi x=-2

NV
17 tháng 4 2022

\(\dfrac{sin3x-cos3x}{sinx+cosx}=\dfrac{3sinx-4sin^3x-\left(4cos^3x-3cosx\right)}{sinx+cosx}\)

\(=\dfrac{3\left(sinx+cosx\right)-4\left(sin^3x+cos^3x\right)}{sinx+cosx}\)

\(=\dfrac{3\left(sinx+cosx\right)-4\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}\)

\(=3-4\left(1-sinx.cosx\right)=3-4+4sinx.cosx\)

\(=2sin2x-1\)

18 tháng 4 2022

thầy giải 3 câu trên giúp em với ạ

 

10 tháng 7 2016

\(x^4-8x^3+6x^2+24x+9=0\)

\(\Leftrightarrow\left(x^4-6x^3-3x^2\right)+\left(-2x^3+12x^2+6x\right)+\left(-3x^2+18x+9\right)=0\)

\(\Leftrightarrow x^2\left(x^2-6x-3\right)-2x\left(x^2-6x-3\right)-3\left(x^2-6x-3\right)=0\)

\(\Leftrightarrow\left(x^2-6x-3\right)\left(x^2-2x-3\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x^2-6x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x-3=0\\x^2-6x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=3\\x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{array}\right.\)

Vậy tập nghiệm của phương trình : \(S=\left\{-1;3-2\sqrt{3};3;3+2\sqrt{3}\right\}\)

13 tháng 7 2016

tks ạ

 

NV
21 tháng 1 2024

8.

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a>0\\\sqrt{x^2+4x+5}=b>0\end{matrix}\right.\) \(\Rightarrow2a^2-b^2=x^2+1\)

Pt trở thành:

\(\sqrt{2a^2-b^2}+2a=3b\)

\(\Leftrightarrow\sqrt{2a^2-b^2}=3b-2a\)

\(\Rightarrow2a^2-b^2=4a^2-12ab+9b^2\)

\(\Leftrightarrow2a^2-12ab+10b^2=0\Rightarrow\left[{}\begin{matrix}a=b\\a=5b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x+3}=\sqrt{x^2+4x+5}\\\sqrt{x^2+2x+3}=5\sqrt{x^2+4x+5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+3=x^2+4x+5\\x^2+2x+3=25\left(x^2+4x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\24x^2+98x+122=0\left(vn\right)\end{matrix}\right.\)

NV
21 tháng 1 2024

9.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+2b^2=3-x=-\left(x-3\right)\)

Pt trở thành:

\(a-2b-3ab=-\left(a^2+2b^2\right)\)

\(\Leftrightarrow a-2b+a^2-3ab+2b^2=0\)

\(\Leftrightarrow a-2b+\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a+1=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}=2\sqrt{1-x}\\\sqrt{1+x}+1=\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1+x=4\left(1-x\right)\\x+2+2\sqrt{1+x}=1-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=3\Rightarrow x=\dfrac{3}{5}\\-1-2x=2\sqrt{1+x}\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\left\{{}\begin{matrix}-1-2x\ge0\\\left(-1-2x\right)^2=4\left(1+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x^2=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow x=-\dfrac{\sqrt{3}}{2}\)

Vậy \(x=\left\{\dfrac{3}{5};-\dfrac{\sqrt{3}}{2}\right\}\)