Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{4^{x+2}+4^{x+1}+4^x}{21}=\frac{4^x\cdot\left(4^2+4+1\right)}{21}=\frac{4^x\cdot21}{21}=4^x\)
\(\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{31}=\frac{9^x\cdot\left(1+3+3^2\right)}{31}=\frac{9^x\cdot13}{31}\)
Xét \(4^x=\frac{9^x\cdot13}{31}\)
=> \(\frac{4^x}{9^x}=\frac{13}{31}\)
Vì \(\hept{\begin{cases}\left(4;9\right)=1\\13\notin B\left(4\right)\\31\notin B\left(9\right)\end{cases}\Rightarrow x\in\varnothing}\)
Vậy x không tồn tại
dạng bài này là quá CƠ BẢN, ko làm được tức là Xác Định rồi
a)TH1 x>=3 \(\left|x-3\right|\)=x-3
pttt: x-3-2x=1 suy ra x=-4 <3 -> loại
TH2 x=< 3 pttt 3-x-2x=1 suy ra x =2/3 thỏa mãn
b) VT=\(\dfrac{4^{x+2}+4^{x+1}+4^x}{21}=\dfrac{4^x\left(4^2+4+1\right)}{21}=4^x\)
VP= \(\dfrac{3^{2x}+3^{2x+1}+3^{2x+3}}{31}=\dfrac{9^x\left(1+3+27\right)}{31}=9^x\)
vậy pt đã cho tương đương với 4^x=9^x \(\Leftrightarrow\left(\dfrac{4}{9}\right)\)^x =1 suy ra x =0
\(-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\\ \Rightarrow-x+2x=\dfrac{3}{5}+\dfrac{4}{7}\\ \Rightarrow x=\dfrac{21}{35}+\dfrac{20}{35}\\ \Rightarrow x=\dfrac{41}{35}\)
Vậy `x=41/35`
__
\(\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow\left(\dfrac{3}{7}-\dfrac{2}{3}\right)x=\dfrac{10}{21}\\ \Rightarrow\left(\dfrac{9}{21}-\dfrac{14}{21}\right)x=\dfrac{10}{21}\\ \Rightarrow\dfrac{-5}{21}x=\dfrac{10}{21}\\ \Rightarrow x=\dfrac{10}{21}:\left(-\dfrac{5}{21}\right)\\ \Rightarrow x=-2\)
Vậy `x=-2`
a)
-4/7 - x = 3/5 - 2x
2x - x = 3/5 + 4/7
x = 41/35
Vậy x = 41/35
b)
3/7.x - 2/3.x = 10/21
x(3/7 - 2/3) = 10/21
x.(-5/21) = 10/21
x = 10/21 : (-5/21) = -2
Vậy x = -2
a: =>|5/4x-7/2|=|5/8x+3/5|
=>5/4x-7/2=5/8x+3/5 hoặc 5/4x-7/2=-5/8x-3/5
=>5/8x=41/10 hoặc 15/8x=29/10
=>x=164/25 hoặc x=116/75
b: =>3:|x/4-2/3|=6-21/5=9/5
=>|1/4x-2/3|=5/3
=>1/4x-2/3=5/3 hoặc 1/4x-2/3=-5/3
=>1/4x=7/3 hoặc 1/4x=-1
=>x=28/3 hoặc x=-4
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(2x-x-9\right)\left(2x+x+9\right)=0\end{matrix}\right.\Leftrightarrow x=9\)
e: =>|2x-7|=2x-7
=>2x-7>=0
=>x>=7/2
Ta có : \(\frac{4^{x+2}+4^{x+1}+4^x}{21}=\frac{3^{2x}+3^{2x+1}+3^{2x+3}}{31}\)
\(\Rightarrow\frac{4^x\left(4^2+4+1\right)}{21}=\frac{3^{2x}\left(1+3+3^3\right)}{31}\)
\(\Rightarrow\frac{4^x.21}{21}=\frac{3^{2x}.31}{31}\)
=> 4x = 32x
=> 4x = (32)x
=> 4x = 9x
=> \(\frac{4^x}{9^x}=1\)(vì lũy thừa của một số khác 0 luôn luôn là 1 số khác 0)
=> \(\left(\frac{4}{9}\right)^x=1\)
=> x = 0
Vậy x = 0