Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=2005 vào biểu thức, ta được:
20052005-2006*20052004+...+2006*20052-2006*2005-1
=20052005-(2006*20052004-..-2006*20052+2006*2005+1)
Đặt A=(2006*20052004-..-2006*20052+2006*2005+1)
2005A=2006*20052005-..-2006*20053+2006*20052+2005
2005A+2005*2006=2006*20052005-..-2006*20053+2006*20052+2006*2005+1+2004=A+2004
2005A-A=2004-2005*2006
2004A=2004-2005*2006
A=(2004-2005*2006)/2004=1-(2005*2006)/2004
=>20052005-(2006*20052004-..-2006*20052+2006*2005+1)=20052005-1+(2005*2006)/2004
đến đây cậu làm được chưa, quy đồng lên rồi tính, phân phối ra ý
Ta có:
\(3^{2002}-2^{2002}+3^{2000}-2^{2000}\)
\(=3^{2002}+3^{2000}-\left(2^{2002}+2^{2000}\right)\)
\(=3^{2000}\left(3^2+1\right)-2^{2000}\left(2^2+1\right)\)
\(=3^{2000}.10-2^{1999}.10=10\left(3^{2000}-2^{1999}\right)⋮10\)
Vậy.....
\(!X-1!+!x+4!\ge3\)
!X-2!=!Y-3!=0=> X=2; Y=3
2.
a=(3-3^2005)/4
XEM LAI ĐỀ
1.Số hạng thứ 1 cộng số hạng cuối bao giờ cũng lớn hơn hoặc bằng vế phải
=> phần giữa phải triệt tiêu=0
=> x=2 và y=3
Đặt S=1+3+32+33+...+350
3S=3+32+33+...+351
3S-S=3-3+32-32+..350-350+351-1
2S=351-1
S=(351-1) :2
nhân 3 cả vế lên rồi trừ cho vế trước sau đó chia 2 thì ra
1a, Ta có : 2S=2+2^2+2^3+...+2^51
=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)
=> S = 2^51-1
Vậy S < 2^51
1,b 24^54.54^24.2^10 chia hết 72^63
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n
= 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|
=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0
Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003
Th1 : 2x ≤ 4003
=> M ≥ 4003-2x ≥ 0
Để m nho nhat thi 2x phai lon nhat
=> 2x=4003=>x=\(\frac{4003}{2}\)
M ≥ 4003-4003=0
Th2 2x ≥ 4003
M ≥ 2x-4003 ≥0
Để M nho nhat thi 2x phai nho nhat
=> 2x=4003=>x=4003/2
M ≥ 4003 -4003=0
Tu 2 truong hop tren ta co GTNN cua M la 0
Xay ra khi x=4003/2
Để M đạt GTNN thì:
|x-2002|+|x-2001|> hoặc = 0
Vì |x-2002|> hoặc = 0
|x-2001|> hoặc = 0
Nếu |x-2002|=0
=>x-2002=0
x=2002+0
x=2002
Thay x=2002 ta có:
|2002-2002|+|2002-2001|
=|0|+|1|
=0+1
=1
=> GTNN của M=1
a, \(2^{x+1}.3^y=12^x\Rightarrow2^{x+1}.3^y=3^x.4^x\Rightarrow2^{x+1}.3^y=2^{2x}.3^x\)
=> x + 1 = 2x ; y = x
=> x = 1 ; y = x = 1
b, \(10^x:5^y=20^y\Rightarrow2^x.5^x:5^y=4^y.5^y\Rightarrow2^x.5^{x-y}=2^{2y}.5^y\)
=> x = 2y ; x- y = y => x = 2y
VẬy mọi số tự nhiên x,y đều thỏa mãn miễn x = 2y ( thử xem)
c, \(2^x=4^{y-1}\Rightarrow2^x=2^{2\left(y-1\right)}\Rightarrow x=2\left(y-1\right)\Rightarrow x=2y-2\)
\(27^y=3^{x+8}\Rightarrow3^{3y}=3^{x+8}\Rightarrow3y=x+8\Rightarrow3y=2y-2+6\)
=> 2y + 4 = 3y => y = 4 ;
x = 2.4 - 2 = 6
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
D = 31 - 32 + 33 - 34 + .... + 32001 - 32002 + 32003
3D = 32 - 33 + 34 - 35 + .... + 32002 - 32003 + 32004
3D + D = (32 - 33 + 34 - 35 + ... + 32002 - 32003 + 32004) + (31 - 32 + 33 - 34 + ... + 32001 - 32002 + 32003)
4D = 32004 + 31
D = \(\frac{3^{2004}+3^1}{4}\)
Ủng hộ mk nha !!! ^_^