Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)
Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)
* BĐT Cauchy - Schwars = BĐT Bunhiacopxki
- Thông thường :
( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)
Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)
- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn
(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)
Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)
* BĐT AM-GM
- trung bình nhân (2 số)
với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b
- Trung bình nhân ( n số )
Với x1 , x1 , x3 ,..., xn \(\ge0\)
Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)
Dấu "=" xảy ra khi x1 = x2 =...=xn
-Trung bình hệ số :
Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số
Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)
Dấu "=" xảy ra khi x1 = x2 = xn
=================
Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có
nhân chéo lên
nhân a+b+c từ 9/a+b+c sang vế trái
vế phải còn 9
sau đó nhân vế trái ra
sử dụng bdt cosi là ra nha bn
\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).
Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)
Bài này giải bằng Bunhiacopxki (kết hợp nguyên lý Dirichlet) chứ AM-GM thì e là không ổn:
Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\) luôn có 2 số cùng phía so với 1, không mất tính tổng quát, giả sử đó là \(b^2\) và \(c^2\)
\(\Rightarrow\left(b^2-1\right)\left(c^2-1\right)\ge0\)
\(\Rightarrow b^2c^2+1\ge b^2+c^2\)
\(\Rightarrow b^2c^2+2b^2+2c^2+4\ge3b^2+3c^2+3\)
\(\Rightarrow\left(b^2+2\right)\left(c^2+2\right)\ge3\left(b^2+c^2+1\right)\)
\(\Rightarrow\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a^2+1+1\right)\left(1+b^2+c^2\right)\ge3\left(a+b+c\right)^2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Phổ thông?Có phải dạng này không nhỉ?
`(ax+by)^2<=(a^2+b^2)(x^2+y^2)`
`<=>a^2x^2+b^2y^2+2axby<=a^2x^2+a^2y^2+b^2x^2+b^2y^2`
`<=>a^2y^2-2axby+b^2x^2>=0`
`<=>(ay-bx)^2>=0` luôn đúng
Dấu "=" `<=>ay=bx<=>a/x=b/y`