K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(\left(2016x-2017y\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\)

\(=2016x-2017y-\left(2016x-2018x\right)+2017y-2018z\)

\(=2016x-2016x+2018z-2018z\)

\(=0\)

Vậy \(\left(2016x-2017\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\ne2018\)

21 tháng 6 2017

rút gọn là rõ

1 tháng 7 2017

     (2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=>  2016x - 2017y  -  2016x + 2018z +  2017y - 2018z  = 2018
=>  2016x - 2016x + 2017y - 2017y + 2018z - 2018z     = 2018
=>           0x         +          0y         +          0z             = 2018 (vô lí)
Vậy không tìm được các số nguyên x, y, z thỏa mãn đề bài

(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018

=> 2016x - 2017y - 2016x + 2018z + 2017y -2018z   = 2018

=>  2016x - 2016x  + 2017y  - 2017y + 2018z  - 2018z=2018

=>    0x             +               0y                     +               0z=2018(vô lý)

Vậy ko tìm được các số nguyên x,y,z thoả mãn đề bài.     

x=2017 nên x-1=2016

\(A=x^{2017}-x^{2016}\left(x-1\right)-x^{2015}\left(x-1\right)-...-x\left(x-1\right)+1\)

\(=x^{2017}-x^{2017}+x^{2016}-x^{2016}+...-x^2+x+1\)

=x+1

=2017+1=2018

30 tháng 1 2019

\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)

\(\text{TH1 : z = 0}\)

\(\Rightarrow2016^0+2017^y=2018^x\)

\(\Rightarrow1+2017^y=2018^x\)

\(\Rightarrow y=1;x=1\)

\(\text{TH2 : y = 0 }\)

\(\Rightarrow2016^z+2017^0=2018^x\)

\(\Rightarrow2016^z+1=2018^x\)

\(\text{Vế trái là số lẻ khi x }\ge1\)

\(\text{Vế phải là số chẵn khi x }\ge1\)

\(\Rightarrow\text{TH2 bị loại}\)

\(\text{TH3 : }x,y,z\ne0\)

\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)

\(\Rightarrow2018^x\text{ là số chẵn}\)

\(\Rightarrow\text{TH3 bị loại}\)

\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)