K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2019

Lời giải:

Để $y=\sqrt{4x-12m}$ xác định trên $(0;+\infty)$ thì $4x\geq 12m$ với mọi $x\in (0;+\infty)$

$\Leftrightarrow m\leq \frac{x}{3}$ với mọi $x\in (0;+\infty)$

Hay $m\leq 0$

Với $m$ nguyên và $m\in (-2018;2018)$ thì $m\in\left\{-2017; 2016;...;0\right\}$

Do đó có 2018 giá trị nguyên của $m$ thỏa mãn đề bài

Đáp án B.

30 tháng 11 2019

\(A=[3;5)\) ; \(B=\left(-\infty;4\right)\cup\left(7;+\infty\right)\)

\(\Rightarrow A\cup B=\left(-\infty;5\right)\cup\left(7;+\infty\right)\)

\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)

Ơ không biết bạn có gõ nhầm đáp án A không nhỉ :v

\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)

1 tháng 12 2019

ồ ok ạ

NV
22 tháng 11 2019

ĐKXĐ: \(4x\ge12m\Rightarrow x\ge3m\)

Để hàm số xác định trên khoảng đã cho \(\Rightarrow3m\le0\Rightarrow m\le0\)

\(\Rightarrow\) Có 2018 giá trị nguyên

AH
Akai Haruma
Giáo viên
18 tháng 9 2020

Lời giải:
Để $y$ xác định trên trên $(1;2)\cup [4;+\infty)$ thì:

\(\left\{\begin{matrix} x+m\geq 0\\ 2x-m+1\neq 0\end{matrix}\right., \forall x\in (1;2)\cup [4;+\infty)\)

\(\Leftrightarrow \left\{\begin{matrix} -m\leq x\\ m\neq 2x+1\end{matrix}\right., \forall x\in (1;2)\cup [4;+\infty)\)

\(\Leftrightarrow \left\{\begin{matrix} -m\leq 1\\ m\neq (3;5)\cup [9;+\infty)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq -1\\ m\in (-\infty;3]\cup [5;9)\end{matrix}\right.\)

Vì $m$ nguyên dương nên $m\in\left\{1;2;3;5;6;7;8\right\}$

Tức là có 7 giá trị $m$ thỏa mãn.

NV
24 tháng 10 2019

\(y=\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{x^2+8}=t\Rightarrow t\ge2\)

Xét hàm \(f\left(t\right)=t^2-3t+1\) trên \([2;+\infty)\)

\(a=1>0;\) \(-\frac{b}{2a}=\frac{3}{2}< 2\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)

\(\Rightarrow f\left(t\right)_{min}=f\left(2\right)=-1\)

2/ \(a=-1< 0\) ; \(-\frac{b}{2a}=m-1\Rightarrow\) hàm số nghịch biến trên \(\left(m-1;+\infty\right)\)

Để hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow m-1\le2\Rightarrow m\le3\)

3/ \(-\frac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=0\) ; \(f\left(2\right)=-4\) ; \(f\left(4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-4\\M=0\end{matrix}\right.\)

4/ \(a=-1< 0\) ; \(-\frac{b}{2a}=\left|m-1\right|\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(\left|m-1\right|;+\infty\right)\)

Đề hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow\left|m-1\right|\le2\)

\(\Leftrightarrow-2\le m-1\le2\Rightarrow-1\le m\le3\)

24 tháng 10 2019

cảm ơn bạn nhiều nhé

NV
8 tháng 5 2020

Do \(2x^2+x+1=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}>0;\forall x\) nên BPT tương đương:

\(\left(5-m\right)x^2-2\left(m+1\right)x+1< 0\)

Để BPT vô nghiệm

\(\Leftrightarrow\left(5-m\right)x^2-2\left(m+1\right)x+1\ge0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}5-m>0\\\Delta'=\left(m+1\right)^2-\left(5-m\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\m^2+3m-4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\-4\le m\le1\end{matrix}\right.\) \(\Rightarrow-4\le m\le1\)