Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số y = m - 2 x - x + 1 xác định khi và chỉ khi m - 2 x ≥ 0 x + 1 ≥ 0 ⇔ x ≤ m 2 x ≥ - 1 .
Do đó tập xác định của hàm số y = m - 2 x - x + 1 là một đoạn trên trục số khi và chỉ khi m 2 > - 1 ⇔ m > - 2
Hàm số y = ax + b ( a ≠ 0 ) đồng biến trên R khi a> 0.
Do đó, để hàm số đã cho đồng biến trên R thì m 2 - 1 > 0 ⇔ [ m > 1 m < - 1
Chọn C.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x< \frac{9}{2}\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;...;4\right\}\Rightarrow\sum x=7\)
Ta có f x ≥ 0 ⇔ x + 3 m ≥ 2 ⇔ x ≥ 2 - 3 m
f x ≥ 0 với mọi x ∈ [ 1 ; + ∞ ) ⇔ [ 1 ; + ∞ ) ⊂ [ 2 - 3 m ; + ∞ ) ⇔ 2 - 3 m ≤ 1 ⇔ m ≥ 1 3 .
Chọn C.
Lời giải:
Để $y=\sqrt{4x-12m}$ xác định trên $(0;+\infty)$ thì $4x\geq 12m$ với mọi $x\in (0;+\infty)$
$\Leftrightarrow m\leq \frac{x}{3}$ với mọi $x\in (0;+\infty)$
Hay $m\leq 0$
Với $m$ nguyên và $m\in (-2018;2018)$ thì $m\in\left\{-2017; 2016;...;0\right\}$
Do đó có 2018 giá trị nguyên của $m$ thỏa mãn đề bài
Đáp án B.
Điều kiện xác định: 5 x 2 - 4 x - 1 ≥ 0 ⇔ [ x ≤ - 1 5 x ≥ 1
Do đó, tập xác định của hàm số y = 5 x 2 - 4 x - 1 là D = ( - ∞ ; 1 5 ] ∪ [ 1 ; + ∞ )
ĐKXĐ: \(4x\ge12m\Rightarrow x\ge3m\)
Để hàm số xác định trên khoảng đã cho \(\Rightarrow3m\le0\Rightarrow m\le0\)
\(\Rightarrow\) Có 2018 giá trị nguyên