K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

Có mình=))

6 tháng 6 2016

như thế cũng được

31 tháng 3 2021

có đề thi HS giỏi lớp 5 ko ạ

20 tháng 8 2015

Toán Văn Anh 8 hs 5 hs 7 hs 5 2 4 3

Từ biểu đồ trên: Tổng số học sinh giỏi (Toán và  Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi cả 3 môn ( Toán; Văn; Anh) = Số học sinh chỉ giỏi 2 trong 3 môn

=> Số học sinh giỏi cả  3 môn là: (8 + 5 + 7 - 11) : 3 = 3 học sinh

Từ đo, ta tìm được số hs chỉ  giỏi  2 trong 3 môn ( xem hình)

b) Số học sinh chỉ giỏi Toán là: 15 - (4 + 3+ 5) = 3 HS

Số hs chỉ giỏi Văn là : 14 - (5 + 3 + 2)= 4 HS

Số hs chỉ giỏi tiếng Anh là: 12 - ( 4 + 3 + 2) = 3 HS

ĐS:...

23 tháng 5 2019

mk biết làm nhưng mà lười đánh máy. Xin lỗi bạn nha !

13 tháng 3 2020

Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\)\(0< x< 435\))

y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\)\(0< y< 435\))

Vì hai trường A và B có 435 học sinh dự thi nên ta có PT: \(x+y=435\) (1)

Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có tỉ lệ thi đỗ vào lớp 10 là 87% nên ta có PT: \(85\%x+90\%y=87\%\cdot435\) (2)

Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=435\\85\%x+90\%y=87\%\cdot435\end{cases}}\)

Giải HPT, ta có: \(\hept{\begin{cases}x=261\\y=174\end{cases}}\) (TMĐK)

Vậy trường A có 261 học sinh dự thi và trường B có 174 học sinh dự thi, vào lớp 10.

13 tháng 3 2020

Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\),\(0< x< 500\))

y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\),\(0< y< 500\))

Vì cả hai trường có 435 thi đỗ vào lớp 10 đạt tỉ lệ là 87% nên ta có PT: \(x+y=\frac{435}{87\%}\) <=> \(x+y=500\) (1)

Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có 435 học sinh thi đỗ vào lớp 10 nên ta có PT: \(85\%x+90\%y=435\) (2)

Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=500\\85\%x+90\%y=435\end{cases}}\)

Giải HPT, ta có: \(\hept{\begin{cases}x=300\\y=200\end{cases}}\) (TMĐK)

Vậy trường A có 300 học sinh dự thi và trường B có 200 học sinh dự thi, vào lớp 10.