K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

2n+33n−1∈Z2n+33n−1∈Z

<=> 2n + 3    chia hết cho    3n - 1

<=> 6n + 9    chia hết cho     3n - 1

<=> (6n - 2) + 11    chia hết cho    3n - 1

<=>  2(3n - 1) + 11    chia hết cho    3n - 1

<=> 11    chia hết cho 3n - 1

<=> 3n - 1 thuộc Ư(11) = {±1;±11±1;±11}

Thay từng giá trị vào 3n - 1 để tìm n 

Rồi xét giá trị của n có nguyên hay không 

Nếu không thì vứt

Nếu là số nguyên thì nhận

10 tháng 5 2022

\(\dfrac{6n+9}{3n-1}=\dfrac{2\left(3n-1\right)+11}{3n-1}=2+\dfrac{11}{3n-1}\)

\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

 

3n-1 1 -1 11 -11
n loại 0 4 loại

 

 

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

25 tháng 8 2021

\(B=\frac{9n+1}{3n-2}=\frac{3\left(3n-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)

\(\Rightarrow3n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

3n - 21-17-7
n1loại3loại
25 tháng 8 2021

\(B=\frac{9n+1}{3n-2}=\frac{3.\left(3-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)

=>3n-2 \(\in\)Ư(7)={\(\pm\)1;\(\pm\)7}

ta có bảng giá trị sau:

3n-217-1-7 
n13loạiloại 
21 tháng 2 2018

a) Để \(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)là số nguyên . 

=> \(\frac{5}{3n+2}\)là 1 số nguyên

=> 5 chia hết cho 3n+2 .

=> 3n+2 thuộc Ư(5)=\(\left\{\pm1;\pm5\right\}\)

Từ đó, ta lập bảng   ( khúc này bn tự làm)

Vậy...

b) Để \(\frac{5}{3n+2}\)đạt giá trị lớn nhất:

=>  3n+2 đạt giá trị tự nhiên nhỏ nhất

=> 3n đạt giá trị tự nhiên nhỏ nhất

=> n là số tự nhiên nhỏ nhấ

<=> n = 0 

21 tháng 2 2018

cảm ơn bạn nha.

15 tháng 2 2018

a) Để phân số có giá trị là số nguyên thì \(\left(n+7\right)⋮\left(2n+3\right)\)

\(\Rightarrow\left(2n+14\right)⋮\left(2n+3\right)\)

\(\Rightarrow\left[\left(2n+3\right)+11\right]⋮\left(2n+3\right)\)

\(\Rightarrow11⋮\left(2n+3\right)\)

\(\Rightarrow2n+3\inƯ\left(11\right)=\left\{-11; -1; 1; 11\right\}\)

\(\Rightarrow n\in\left\{-7; -2; -1; 4\right\}\)

b) Để phân số là số nguyên thì \(\left(3n-4\right)⋮\left(5n+2\right)\)

\(\Rightarrow\left(15n-20\right)⋮\left(5n+2\right)\)

\(\Rightarrow\left[3\left(5n+2\right)-26\right]⋮\left(5n+2\right)\)

\(\Rightarrow26⋮\left(5n+2\right)\)

\(\Rightarrow\left(5n+2\right)\inƯ\left(26\right)=\left\{-26;-13;-2;-1; 1; 2; 13; 26\right\}\)

Mà: \(n\in Z\Rightarrow5n+2\in\left\{-13;2\right\}\)

\(\Rightarrow n\in\left\{-3; 0\right\}\)

15 tháng 2 2018

\(a,\) \(\frac{n+7}{2n+3}\) có giá trị nguyên

\(\Leftrightarrow\) \(n+7\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(2\left(n+7\right)\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(2n+14\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(2n+3+11\) \(⋮\) \(2n+3\)

           \(2n+3\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(11\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(2n+3\inƯ\left(11\right)\) 

\(\Rightarrow\) \(2n+3\in\left\{-1;-11;1;11\right\}\)

\(\Rightarrow\) \(2n\in\left\{-4;-14;-2;8\right\}\)

\(\Rightarrow\) \(n\in\left\{-2;-7;-1;4\right\}\)

b, nghĩ đã

17 tháng 3 2020

Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)

\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)

\(\Leftrightarrow6n-9+11⋮2n-3\)

Ta thấy \(6n-9⋮2n-3\forall n\)

\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)

\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)

\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)

...

6 tháng 3 2018

giúp mình nha !