Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi ABCD là tứ giác nội tiếp đường tròn.
- Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
- Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
- Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
- Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
- Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
- Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
- Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
- Hay: (AK+CK)·BD = AB·CD + BC·DA;
- Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
Có trong nâng cao phát triển toán 8 tập 2 nha bạn!!
Ngại viết vì khá là dài :((
* Định lí Menelaus: Cho tam giác ABC, một đường thẳng d không đi qua các đỉnh tam giác, cắt các đường thẳng BC,AC,AB lần lượt tại A', B', C'. Khi đó: \(\frac{B'A}{B'C}.\frac{A'C}{A'B}.\frac{C'B}{C'A}=1\)
Cm: Kẻ AH,BK,CN cùng vuông góc với đường thẳng d. Suy ra AH// BK// CN
Theo định lý Ta-lét, ta có: \(\frac{B'A}{B'C}=\frac{AH}{CN};\frac{A'C}{A'B}=\frac{CN}{BK};\frac{C'B}{C'A}=\frac{BK}{AH}\)
Do đó: \(\frac{B'A}{B'C}.\frac{A'C}{A'B}.\frac{C'B}{C'A}=\frac{AH}{CN}.\frac{CN}{BK}.\frac{BK}{AH}=1\)(ĐPCM)
Tu kehinh nhe
Vitamgiac ABCdong đáng với tam giác A'B'C' gocB=goc B' 1
Ma gocH=gocH' 2
Tu 1va 2 suy ra
Tam giac ABHdongdang voitam giacA'B'H'
suy ra AH/A'H'=AB/A'B'=k
h = 18mm, d1 = 7 000N/m3, d2 = 10300N/m3 Xét 2 điểm A, B trong 2 nhánh nằm trong cùng 1 mặt phẳng ngang trùng với mặt phân cách giữa xăng và nước biển.
Ta có: PA = PB mặt khác PA = d1h1, PB = d2h2
⇒ d1h1 = d2h2
h2 = h1 – h ⇒ d1h1 =h2 (h1 – h)
(d2 – d1)h1 = d2h
h1=d2.hd2−d1=10300.1810300−7000≈56mm
https://sachbaitap.com/cau-72-trang-9-sach-bai-tap-sbt-toan-8-tap-1-c6a5861.html
https://sachbaitap.com/cau-28-trang-9-sach-bai-tap-sbt-toan-8-tap-1-c6a5438.html
THAM KHẢO
Gọi K là trung điểm của HD
Xét ΔHDC có
K,M lần lượt là trung điểm của HD,HC
=>KM là đường trung bình của ΔHDC
=>KM//DC và \(KM=\dfrac{DC}{2}\)
mà \(AB=\dfrac{DC}{2}\)
nên KM=AB
KM//DC
DC//AB
Do đó: KM//AB
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó: ABMK là hình bình hành
=>AK//BM
Xét ΔADM có
MK,DH là đường cao
MK cắt DH tại K
Do đó: K là trực tâm
=>\(AK\perp DM\)
mà AK//BM
nên \(BM\perp DM\)
Chỉ cần dựa trên định lý Ta lét là được
Từ C kẻ đường thẳng song song với AB cắt AD, BE ở K và H
\(\Rightarrow\frac{AF}{FB}.\frac{BD}{CD}.\frac{CE}{EA}=\frac{AB}{CK}.\frac{AF}{FB}.\frac{CH}{AB}\)
\(\Rightarrow\frac{FB}{CH}.\frac{AB}{FB}.\frac{CH}{AB}=1\)
Chứng minh theo lớp 8 rồi nhé