Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(n^3-13n\)
\(=\left(n^3-n\right)-12n\)
\(=n\left(n^2-1\right)-6\left(2n\right)\)
\(=\left(n-1\right)n\left(n+1\right)-6\left(2n\right)\)
Vì (n-1);n;n+1 là ba số tự nhiên liên tiếp =>(n-1)n(n+1)\(⋮\)2 và 3;
=>(n-1)n(n+1)\(⋮\)6
Mà 6(2n)\(⋮\)6
=>(n-1)n(n+1)-6(2n)\(⋮6\)
\(\Rightarrow n^3-13n⋮6\)
Ta có:
\(n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n^2+3n+2n+6\right)\)
\(=n\left(n+1\right)\left[n\left(n+3\right)+2\left(n+3\right)\right]\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì tích 4 số nguyên liên tiếp luôn chia hết cho 24
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24
Bài 1 :
Có : P = n^2+n+2 = n.(n+1)+2
Ta thấy n và n+1 là 2 số tự nhiên liên tiếp
=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6
=> P có tận cùng là : 2 hoặc 4 hoặc 8
=> P ko chia hết cho 5
=> ĐPCM
Tk mk nha
Bài 2 :
Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6
= a.(a+1).(a+2)/6
Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> a.(a+1).(a+2) chia hết cho 2 và 3
=> a.(a+1).(a+2) chia hết cho 6
=> A thuộc Z
Tk mk nha
Ta có: a^5 - a = a( a4 - 1 )
= a( a2 - 1 )( a2 + 1 )
= a( a -1 )( a + 1 )( a2 - 4 + 5 )
= a( a - 1 )( a + 1 )( a2 - 4 ) + a( a - 1 )( a + 1 ).5
= ( a - 2 )( a - 1 )a( a + 1 )( a + 2 )+ a( a - 1) ( a + 1 ).5
Vì ( a - 2)( a - 1)a( a + 1)( a + 2 ) chia hết cho 30
và a( a - 1)( a +1)5 chia hết cho 30
Nên ( a - 2)( a - 1)a( a + 1)( a + 2 )+ a( a - 1 )( a + 1 )5 chia hết cho 30
Mà 30 = 5.6
Vậy a5 - a chia hết cho 6 với mọi a thuộc Z ( đpcm)
Hok tốt !
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)
Vì \(n\in Z\) nên \(n\left(n-1\right)\left(n+1\right)\)là tích 3 số nguyên liên tiếp
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮6\) (vì chia hết cho 2 và 3)
Mà 12n chia hết cho 6.
Do đó: \(n^3-13n=n\left(n-1\right)\left(n+1\right)-12n⋮6\)
Ta có: \(\left(2n-1\right)^3-2n+1=\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left(4n^2-4n+1-1\right)\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Ta có: \(4⋮4\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮4\) (1)
Mà \(n\left(n-1\right)\) là 2 số tự nhiên liên tiếp nên chia hết cho 2
\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮2\) (1)
Từ (1) và (2):
\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮8\)
Hay: \(A⋮8\)
=.= hok tốt!!
Ta có:\(A=n^3+11n=n^3-n+12n\)
=\(n\left(n^2-1\right)+12n\)
Lại có: \(n^2-1=\left(n-1\right)\left(n+1\right)\)
\(\Rightarrow A=n\left(n-1\right)\left(n+1\right)+12n\)
Vì tích 3 số nguyên liên tiếp luôn chia hết cho 6\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮6\).
Mà \(12n⋮6\) \(\Rightarrow A=n\left(n-1\right)\left(n+1\right)+12n\)\(⋮6\)
\(\Rightarrow A=n^3+11n⋮6\left(đpcm\right)\)
ko cần nữa nh tui nhầm bài OK