Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
Do đó \(\left(a+b\right)^2\ge4ab\)(đpcm)
Các câu sau tương tự
Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu
a, a2+b2+c2 >= ab+bc+ca
<=>a2+b2+c2-ab-bc-ca >= 0
<=>2(a2+b2+c2-ab-bc-ca) >= 0
<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0
<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
b, a2+b2+1 >= ab+a+b
<=>a2+b2+1-ab-a-b >= 0
<=>2(a2+b2+1-ab-a-b) >= 0
<=>2a2+2b2+2-2ab-2a-2b >= 0
<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0
<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)
Vậy...
c, a2+b2+c2+3 >= 2(a+b+c)
<=>a2+b2+c2+3-2a-2b-2c >= 0
<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0
<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)
Vậy...
d, a2+b2+c2 >= 2(ab+bc-ca)
<=>a2+b2+c2-2ab-2bc+2ca >= 0
<=>(a-b-c)2 >= 0 (luôn đúng)
Dấu "=" xảy ra khi a=b=c
Vậy...
e,ta có: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)
Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)
Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)
Dấu "=" xảy ra khi a = b
Câu hỏi của Trần Điền - Toán lớp 9 - Học toán với OnlineMath
Tham khảo câu b
b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-c)^2+(a-b)^2+(b-c)^2=0
=>a=b=c
c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-b)^2+(a-c)^2+(b-c)^2=0
=>a=b=c
a) a2 + b2 + c2 = ab + bc + ac
\(\Rightarrow\) a2 + b2 + c2 - ab - bc - ac = 0
\(\Rightarrow\) 2(a2 + b2 + c2 - ab - bc - ac) = 0
\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
b) (a + b + c)2 = 3(a2 + b2 + c2)
a2 + b2 + c2 + 2ab + 2bc + 2ac = 3a2 + 3b2 + 3c2
\(\Rightarrow\) 2ab + 2ac + 2bc = 2a2 + 2b2 + 2c2
\(\Rightarrow\) 0 = a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac
Hay: a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\)(a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
c) (a + b + c)2 = 3(ab + bc + ac)
a2 + b2 + c2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac
\(\Rightarrow\) a2 + b2 + c2 = ab + ac + bc2
\(\Rightarrow\) 2(a2 + b2 + c2) = 2(ab + ac + bc)
\(\Rightarrow\) 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0
\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)
\(\Rightarrow\) a = b = c
CHÚC BN HOK TỐT(nhớ tik mik nha)
a)Cmr : Nếu : a2 + b2 + c2 = ab + bc + ac thì a = b =c
Bài làm
2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2) =0
= > ( a - b)2 + ( a - c)2 + ( b -c)2 = 0
Vậy :
* ( a - b)2 = 0
* ( a - c)2 =0
* (b -c)2 =0
Suy ra :
* a =b
* a =c
* b = c
Suy ra : a = b =c ( đpcm)
b.
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
Xét hiệu:
\(3\left(a^2+b^2+c^2\right)-\left(a+b+c^2\right)=3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\)
\(=2a^2+2b^2+2c^2-2ab-2ac-2bc\)
\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng)
=> \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)