K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

a) a2 + b2 + c2 = ab + bc + ac

\(\Rightarrow\) a2 + b2 + c2 - ab - bc - ac = 0

\(\Rightarrow\) 2(a2 + b2 + c2 - ab - bc - ac) = 0

\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0

\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)

\(\Rightarrow\) a = b = c

b) (a + b + c)2 = 3(a2 + b2 + c2)

a2 + b2 + c2 + 2ab + 2bc + 2ac = 3a2 + 3b2 + 3c2

\(\Rightarrow\) 2ab + 2ac + 2bc = 2a2 + 2b2 + 2c2

\(\Rightarrow\) 0 = a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac

Hay: a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0

\(\Rightarrow\)(a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)

\(\Rightarrow\) a = b = c

c) (a + b + c)2 = 3(ab + bc + ac)

a2 + b2 + c2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac

\(\Rightarrow\) a2 + b2 + c2 = ab + ac + bc2

\(\Rightarrow\) 2(a2 + b2 + c2) = 2(ab + ac + bc)

\(\Rightarrow\) 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac

\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0

\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)

\(\Rightarrow\) a = b = c

CHÚC BN HOK TỐT(nhớ tik mik nhavuivuivui)

14 tháng 10 2017

a)Cmr : Nếu : a2 + b2 + c2 = ab + bc + ac thì a = b =c

Bài làm

2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2) =0

= > ( a - b)2 + ( a - c)2 + ( b -c)2 = 0

Vậy :

* ( a - b)2 = 0

* ( a - c)2 =0

* (b -c)2 =0

Suy ra :

* a =b

* a =c

* b = c

Suy ra : a = b =c ( đpcm)

1 tháng 7 2016

a) \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

b) \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

(Nhớ k cho mình với nhé!)

2 tháng 7 2017

a) a2+b2+c2 = ab+bc+ca nhân 2 vào cả 2 vế, chuyển tất cả sang vế trái thành 3 HĐT=>đpcm

b) (a+b+c)2 = 3(a2+b2+c2) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế phaỉ tạo ra 3 HĐT=> dpcm

c) (a+b+c)2 = 3(ab+bc+ca) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế trái rồi làm như câu a

Hãy nhấn k nếu bạn thấy đây là câu tl đúng :)

2 tháng 7 2016

Với mọi a,b,c ta đều có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0.\)Dấu "=" chỉ xảy ra khi a = b = c.

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)(1)

a) \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)nên \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow a=b=c\)đpcm (a)

b) \(\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2ba+2ac=\left(a+b+c\right)^2\)

nên \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\Leftrightarrow a=b=c\)đpcm (b)

c) Từ \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

nên \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a=b=c\)đpcm (c).

2 tháng 7 2016

Trừ VT cho VP rồi khai triển về dạng hđt là OK

3 tháng 11 2014

a) Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=>a=b=c

24 tháng 4 2016

không biết

:) :)

b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)

=>(a-c)^2+(a-b)^2+(b-c)^2=0

=>a=b=c

c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)

=>(a-b)^2+(a-c)^2+(b-c)^2=0

=>a=b=c

17 tháng 7 2017

Bài 1:

a)\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Khi \(a=b=c\)

b)\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Rightarrow-2a^2-2b^2-2c^2+2ab+2bc+2ca=0\)

\(\Rightarrow-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\le0\)

Khi \(a=b=c\)

c)\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Khi \(a=b=c\)

Bài 2:

Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow-2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow ab+bc+ca=-1\)\(\Rightarrow\left(ab+bc+ca\right)^2=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+b^2ca+c^2ab\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\left(vi`....a+b+c=0\right)\)

Khi đó: \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)

so u cn tk m sl fr u

17 tháng 7 2017

a2 + b2+ c2 = ab + bc + ca 

=> a2 + b2+ c2 -ab - bc - ca = 0 

=> 2 ( a2 + b2 + c2 -ab -bc - ca) =0

=> ( a2 - 2ab + b2 ) + ( b2 -2bc + c2 ) + ( c2 - 2ca + a2 ) = 0 

<=> ( a-b )2 + ( b -c)2 + ( c- a)2 =0

Do ( a -b)2 \(\ge\)0 ( b-c)2 + \(\ge\)0 ( c -a )2 \(\ge\)0

=> a-b =0 ; b -c = 0 ; c -a = 0 

=> a=b ; b = c ; c =a 

Vậy a = b = c 

17 tháng 7 2019

Vế trái = \(a^3+b^3+c^3-3abc\)

Vế phải = \(a^3-abc+b^3-abc+c^3-abc=a^3+b^3+c^3-3abc\)

Vậy ...