K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Mình cứ đắn đo câu này mãi. Chắc là bạn chép sai đề. M tự ý sửa đề nếu không phải thì thôi nhé. Sửa đề:

\(\hept{\begin{cases}\left(x+y\right)^2-\left(x+y\right)\sqrt{3}+xy=-1\\x^2+y^2+x+2y=\sqrt{3}+\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+3xy-\left(x+y\right)\sqrt{3}=-1\left(1\right)\\x^2+y^2+x+2y=\sqrt{3}+\frac{2}{3}\left(2\right)\end{cases}}\)

Lấy (2) - (1) ta được

\(x\left(1+\sqrt{3}\right)+y\left(2+\sqrt{3}\right)-3xy=\frac{3\sqrt{3}+5}{3}\)

Đặt \(\hept{\begin{cases}x\left(1+\sqrt{3}\right)=a\\y\left(2+\sqrt{3}\right)=b\\3\sqrt{3}+5=c\end{cases}}\)

\(\Rightarrow3xy=\frac{3ab}{c}\)từ đây ta có 

\(\Leftrightarrow a+b-\frac{3ab}{c}=\frac{c}{3}\)

\(\Leftrightarrow3ac+3bc-9ab-c^2=0\)

 \(\Leftrightarrow\left(3a-c\right)\left(c-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}c=3a\\c=3b\end{cases}}\)

Tới đây thì đơn giản rồi nhé

1 tháng 4 2017

Đã đặt \(c=3\sqrt{3}+5\) mà sao đăng lên là nó bị mất.

Cô Vân ơi sửa lỗi này đi cô. Cứ dùng ký hiệu hệ phương trình 3 ẩn thì nó bị mất đi 1 phương trình ah.

19 tháng 12 2016

Khai triển và phân tích nhân tử \(\left(x+2\right)^2+4\left(y-1\right)^2=4xy+13\)

ta có pt sau đây \(\left(x-2y-1\right)\left(x-2y+5\right)=0\)(***)

Nhận xét: \(x^2-xy-2y^2=\left(x+y\right)\left(x-2y\right)\).

Trường hợp 1: \(x-2y=1\)

Pt sau trở thành \(\sqrt{\frac{3y+1}{y+1}}+\sqrt{3y+1}=\frac{2}{\sqrt{\left(y+1\right)\left(3y+1\right)}}\)

Đặt \(a=\sqrt{3y+1},b=\sqrt{y+1}\)

Ta có hệ: \(\hept{\begin{cases}\frac{a}{b}+a=\frac{2}{ab}\\a^2-3b^2=-2\end{cases}}\)

Tới đây chắc bạn giải được rồi đó.

19 tháng 12 2016

Hừm. Mình nghĩ mình nên giải thích cho bạn cách phân tích (***).

Lúc khai triển pt đầu ra ta có: \(x^2+2\left(2-2y\right)x+4y^2-8y-5=0\).

Coi như đây là pt ẩn \(x\), ta tính \(\Delta'=\left(2-2y\right)^2-\left(4y^2-y-5\right)=9\).

Pt có 2 nghiệm: \(x_1=2y-2+3=2y+1\)\(x_2=2y-2-3=2y-5\).

Theo hệ quả định lí Bezout ("Nếu đa thức có nghiệm \(x=a\) thì khi phân tích thành nhân tử sẽ có nhân tử \(x-a\)), ta có các phân tích \(\left(x-2y-1\right)\left(x-2y+5\right)\).

Đây chỉ là phần làm nháp, bạn không cần trình bày vào bài.

6 tháng 9 2017

ko hiện đc công thức

6 tháng 9 2017

Chắc là mình ghi sai

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)