K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Gọi d là ƯCLN của (12n + 2 và 30n + 2).

Ta có:

=>12n + 1 - 30n + 2  chia hết cho d

=>5(12n+1) - 2(30n+2) chia hết cho d

=>60n + 5 - 60n + 4 chia hết cho d

=>1 chia hết cho d

=> 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau

đpcm

Gọi d = ƯCLN ( 12n + 1 ; 30n + 2 )

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)    \(\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\)     \(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Do đó : ƯCLN ( 12n + 1 ; 30n + 2 ) = 1 

Vậy 2 số \(12n+1\)\(;\)  \(30n+2\)là 2 số nguyên tố cùng nhau

31 tháng 12 2023

Gọi ƯCLN(12n + 1;30n + 4) = d . Ta có :

  12n + 1 ⋮ d => 5(12n + 1) = 60n + 5 ⋮ d

  30n + 4 ⋮ d => 2(30n + 4) = 60n + 8 ⋮ d

=> (60n + 8) - (60n + 5) ⋮ d

=> 3 ⋮ d => d ∈ Ư(3) ∈ {1;3} ( Vì ƯCLN ko có số nguyên âm)

Mặt khác :12n + 1 không chia hết cho 3 (Vì 12n ⋮ 3 nhưng 1 ko chia hết cho 3)

=> d = 1 . Vậy 2 số sau là 2 số nguyên tố cùng nhau 

20 tháng 12 2016

Gọi d ƯC(12n + 1, 30n + 2} (d ∈ N)

Ta có:

(12n + 1)⋮d và (30n + 2)⋮d

=> 5(12n + 1)⋮d và 2(30n + 2)⋮d

=> (60n + 5)⋮d và (60n + 4)⋮d

=> [(60n + 5) - (60n + 4)]⋮d

=> 1⋮d

=> d ∈ Ư(1)

=> d ∈ {1}

=> ƯC(12n + 1, 30n + 2) = {1}

=> ƯCLN(12n + 1, 30n + 2) = 1

Vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.

 

21 tháng 1 2024

 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$

$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow ƯCLN(12n+1, 30n+2)=1$

$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

27 tháng 12 2017

Giúp mình nha !

GẤP LẮM!

3 tháng 5 2019

Gọi d là 1 ước chung của 4n + 2 và 6n + 1. Ta có :

4n + 2 :: d ; 6n + 1 :: d

=> 3( 4n + 2 ) - 2( 6n + 1 ) :: d

=> 12n + 6 - 12n + 2 :: d

=> 4 :: d => d thuộc { -4 ; -2 ; -1 ; 1 ; 2 ; 4 }

Mà 6n + 1 là số lẻ => n thuộc { -1; 1 } ( nguyên tố )

Vậy 4n + 2 và 6n + 1 nguyên tố cùng nhau ( đpcm )