Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3+3n^2+2n+2016n\)
\(=n\left(n^2+3n+2\right)+2016n\)
\(=n\left(n+1\right)\left(n+2\right)+2016n\)
Do \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6, và \(2016⋮6\)
\(\Rightarrow\) Biểu thức đã cho chia hết cho 6 với mọi n
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Ta có: \(E=36^n+19^n-2^n\cdot2\)
Mặt khác: \(36\equiv19\equiv2\)(mod 17)
Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)
Vậy .................
ta có
\(A=a^3-a-6a^2-6a+12=a\left(a-1\right)\left(a+1\right)-6\left(a^2-a-2\right)\)
do a là số nguyên nên \(â\left(a-1\right)\left(a+1\right)\)chia hết cho 6
mà hiển nhiên \(-6\left(a^2-a-2\right)\)chia hết cho 6
vậy A chia hết cho 6
+\(n=5k\)
\(P=4.5k^3+6.5k^2+3.5k-17\) không chia hết cho 5
+\(n=5k+1\)
\(P=4\left(5k+1\right)^3+6\left(5k+1\right)^2+3\left(5k+1\right)-17\)
\(=4\left(125k^3+75k^2+15k+1\right)+6\left(25k^2+10k+1\right)+15k+3-17\)
\(=4.125k^3+18.25k^2+135k-4\)không chia hết cho 5
+ tương tự ...........
Mình mới chỉ có thế thôi , chưa nghĩa ra cách khác ..
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia 3 dư 2
Nếu n chia 3 dư 1 => n^2 chia 3 dư 1 => A chia 3 dư 1
Nếu n chia 3 dư 2 => n^2 chia 3 dư 1 => A chia 3 dư 2
=> ĐPCM
k mk nha
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?