K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2020

\(n^3+3n^2+2n+2016n\)

\(=n\left(n^2+3n+2\right)+2016n\)

\(=n\left(n+1\right)\left(n+2\right)+2016n\)

Do \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6, và \(2016⋮6\)

\(\Rightarrow\) Biểu thức đã cho chia hết cho 6 với mọi n

19 tháng 2 2020

ban ơi là 2018n mà

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

6 tháng 3 2018

Ta có: \(E=36^n+19^n-2^n\cdot2\)

Mặt khác: \(36\equiv19\equiv2\)(mod 17)

Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)

Vậy .................

NM
7 tháng 1 2021

ta có 

\(A=a^3-a-6a^2-6a+12=a\left(a-1\right)\left(a+1\right)-6\left(a^2-a-2\right)\)

do a là số nguyên nên \(â\left(a-1\right)\left(a+1\right)\)chia hết cho 6

mà hiển nhiên \(-6\left(a^2-a-2\right)\)chia hết cho 6

vậy A chia hết cho 6

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

14 tháng 1 2016

+\(n=5k\)

\(P=4.5k^3+6.5k^2+3.5k-17\) không chia hết cho 5

+\(n=5k+1\)

\(P=4\left(5k+1\right)^3+6\left(5k+1\right)^2+3\left(5k+1\right)-17\)

\(=4\left(125k^3+75k^2+15k+1\right)+6\left(25k^2+10k+1\right)+15k+3-17\)

\(=4.125k^3+18.25k^2+135k-4\)không chia hết cho 5

+ tương tự ...........

Mình mới chỉ có thế thôi , chưa nghĩa ra cách khác ..

 

 

13 tháng 1 2016

bạn phân thành tick rồi chứng minh