K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a)Ta có: x2+x+1

=x2+2.x.1/2+1/4+3/4

=(x+1/2)2+3/4

Vì (x+1/2)2>=0 với mọi x

=>(x+1/2)2+3/4>0 với mọi x

Vậy x2+x+1>0 với mọi x.

b)Ta có: -5-x2+2x

=-(x2-2x+5)

=-(x2-2x+1+4)

=-(x-1)2-4

Ta có:(x-1)2>=0 với mọi x

=>-(x-1)2<=0 với mọi x

=>-(x-1)2-4<0 với mọi x

Vậy -5-x2+2x<0 với mọi x

                    

24 tháng 7 2017

a) x2+x+1 =  \(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

= \(x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\) 

=\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Do \(\left(x+\frac{1}{2}\right)^2\le0\)vs mọi x => \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)vs mọi x

=> x^2 + x + 1 > 0 vs mọi x

b) -5-x^2 + 2x = -(x^2 - 2x + 5) = \(-\left(x^2-2x+1+4\right)=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\)

Do \(-\left(x-1\right)^2\le0\)vs mọi x=> \(-\left(x-1\right)^2-4< 0\)vs mọi x 

=> -5-x^2+2x<0 vs mọi x

30 tháng 9 2020

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

2 tháng 10 2020

cảm ơn bạn nhìuuu 💞

10 tháng 6 2017

a) \(-2x^2+2x+1>0\)

   \(-\left(2x^2-2x-1\right)>0\)

nhân 2 vế với (-1)=> đổi dấu sao sánh

\(\Leftrightarrow2x^2-2x-1< 0\)

\(\Leftrightarrow x^2-x-\frac{1}{2}< 0\)

\(\Leftrightarrow x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\frac{1}{4}-\frac{1}{2}< 0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)

ta có \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi \(x\)

=> \(\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)(đpcm)

b) \(9x^2-6x+2>0\)

<=> \(\left(3x\right)^2-2.3.x+1-1+2>0\)

<=>\(\left(3x-1\right)^2+1>0\)(1)

vì \(\left(3x-1\right)^2\ge0\)với mọi \(x\)=> (1)  luôn đúng     ( bạn lí giải tương tự như trên nha)

c)\(-4x^2-4x-2< 0\)

\(\Leftrightarrow-\left(4x^2+4x+2\right)< 0\)

nhân 2 vế với (-1)=> đổi dấu so sánh 

\(4x^2+4x+2>0\)

\(\Leftrightarrow\left(2x+1\right)^2+1>0\)

lí giải tương tự như trên

=> đpcm

10 tháng 6 2017

Câu a sai đề rồi cậu ơi

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

13 tháng 7 2017

a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)

c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)

13 tháng 7 2017

Ta có : 4x2 + 2x + 1

= (2x)2 + 2.2x.\(\frac{1}{2}\)\(\frac{1}{2}+\frac{3}{4}\)

= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Mà : (2x + \(\frac{1}{2}\))\(\ge0\forall x\)

=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)  \(>0\forall x\)

Vậy 4x2 + 2x + 1 \(>0\forall x\)

10 tháng 6 2017

a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)

b , Ta có : \(4x^2-2x+3\)\(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)

c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)

\(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)

Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)

10 tháng 6 2017

a,-x2+x+1>0 với mọi x mới đúng

23 tháng 7 2019

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)

26 tháng 5 2017

Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?

3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1

Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)

26 tháng 5 2017

Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.

4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x

5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x