\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+b^2y^2+2abxy\)

\(\Leftrightarrow b^2x^2-2abxy+a^2y^2=0\)

\(\Leftrightarrow\left(bx\right)^2-2\cdot bx\cdot ay+\left(ay\right)^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2=0\Rightarrow bx=ay\Rightarrow\left(\frac{a}{x}=\frac{b}{y}\right)\)

b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)

\(\Leftrightarrow b^2x^2-2bxay+a^2y^2+b^2z^2-2bzcy+c^2y^2+a^2z^2-2azcx+c^2x^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\Rightarrow\left(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\right)}\)

c) \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2+2ab=2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

28 tháng 5 2017

a,  Tương đương   :   \(a^2x^2+a^2y^2+b^2x^2+b^2y^2\)   =   \(a^2x^2+2axby+b^2y^2\)  

                                 \(a^2y^2-2axby+b^2x^2=0\) 

                                 \(\left(ay-bx\right)^2\)  = 0

                                 \(ay-bx=0\)

                                 \(ay=bx\)

                                \(\frac{a}{x}=\frac{b}{y}\)   dpcm

Câu b, c làm tương tự câu a

cái trên thì bn dùng BĐT Bunhiakovshi nha

cái dưới hơi rườm tí mik ko bt lm đúng ko

19 tháng 9 2019

\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)

\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)

\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)

\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)

\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)

\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)

\(+\left(ax-a+b\right)]\)

\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)

\(-bx+ax-a+b)\)

\(=x\left(x+1\right)\left(4ax-a+3b\right)\)

Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)

Đồng nhất hệ số là ra 

17 tháng 2 2017

mik đoán là 3 ík

4 tháng 11 2018

Đặt biểu thức trên là A
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\ne0\)

\(\Rightarrow x=ak,y=bk,z=ck\)

Nên \(A=\frac{\text{[}\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2\text{]}.\left(a^2+b^2+c^2\right)}{\left(a.ak+b.bk+c.bk\right)^2}\)

\(=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right).\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)
\(=\frac{k^2\left(a^2+b^2+c^2\right).\left(a^2+b^2+c^2\right)}{\text{[}k\left(a^2+b^2+c^2\right)\text{]}^2}\)

\(=\frac{k^2.\left(a^2+b^2+c^2\right)^2}{k^2.\left(a^2+b^2+c^2\right)}\)

\(=1\)

Vậy A=1

13 tháng 11 2018

à quên sửa dòng trên chỗ A=1 cái chỗ mẫu là \(k^2.\left(a^2+b^2+c^2\right)^2\)nhen :v

1 tháng 8 2018

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

Ta có: \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)=k^2\left(a^2+b^2+c^2\right)^2\) (1)

\(\left(ax+by+cz\right)^2=\left(a.ak+b.bk+c.ck\right)^2=\left(a^2k+b^2k+c^2k\right)^2=\left[k\left(a^2+b^2+c^2\right)\right]^2=k^2\left(a^2+b^2+c^2\right)^2\)(2)

Từ (1),(2) => đpcm

1 tháng 8 2018

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ka,y=kb,z=kc\)

Ta có VT=\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(k^2a^2+k^2b^2+k^2c^2\right)\left(a^2+b^2+c^2\right)\)=

=\(k^2\left(a^2+b^2+c^2\right)^2\)

Mà \(\left(ax+by+cz\right)^2=\left(a^2k+b^2k+c^2k\right)^2=k^2\left(a^2+b^2+c^2\right)^2\)

=> VT=VP

=> ĐPCM 

8 tháng 11 2016

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\ne̸0\) thì \(x=ak;y=bk;z=ck.\)

Do đó : \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)

\(=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}=\frac{k^2\left(a^2+b^2+c^2\right)^2}{k^2\left(a^2+b^2+c^2\right)^2}=1.\)

6 tháng 8 2016

bài này là bđt bunhia copxi khi xảy ra dấu =
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
c/m nhân tung ra thôi bạn
 !@@@

30 tháng 8 2016

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2=0\)