K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

a + c  =2b ( 1 )

2bd = c(b+d) ( 2)

từ (1) và (2) ta được:

( a+ c ) .d = c.( b + d )

theo tính chất phân phối ta có"

ad + cd = cb + cd

=> ad = cb => a/b = c/d

k mknhes

27 tháng 7 2016

Đặt a +c vào 2bd ta có

(a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ad = cb

=> \(\frac{a}{b}=\frac{c}{d}\)

27 tháng 7 2016

Đặt a +c vào 2bd ta có

(a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ad = cb

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

11 tháng 2 2018

Ta có: 2bd=c.(b+d)
Mà a+c=2b
\(\Rightarrow\)d.(a+c)=c.(b+d)

\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

9 tháng 10 2015

Ta có: 2bd=c.(b+d)

Mà a+c=2b

=>d.(a+c)=c.(b+d)

=>\(\frac{c}{d}=\frac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

\(=>\frac{a}{b}=\frac{c}{d}\)

26 tháng 12 2017

hau ak

19 tháng 6 2019

Ta có: a + c = 2b

=> d(a + c) = 2bd

mà c(b + d) = 2bd

=> d(a + c) = c(b + d)

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

19 tháng 6 2019

Ta có: 2bd = c(b + d)

Mà: a + c = 2b

=> (a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ab = cd

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm0

29 tháng 10 2016

Ta có: 2bd = c(b + d)

=> (a + c).d = bc + cd

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

15 tháng 1 2018

Ta có : 2bd = c (b + d )

=) ( a + c ). d = bc + cd

=) ad + cd = bc + cd

=) ad = bc

=) a/b = c/ d ( đpcm)

9 tháng 2 2018

Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)

Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\)

3 tháng 12 2016

Ta có:2bd=c(b+d)

Hay (a+c)d=c(b+d)

\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)(T/C...)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}=0\)